Source code for message_ix_models.model.water.data.demands

"""Prepare data for adding demands"""

import os
from collections.abc import Sequence
from typing import TYPE_CHECKING, Literal, Union

import numpy as np
import pandas as pd
import xarray as xr
from message_ix import make_df

from message_ix_models.util import broadcast, minimum_version, package_data_path

if TYPE_CHECKING:
    from message_ix_models import Context


[docs] def get_basin_sizes( basin: pd.DataFrame, node: str ) -> Sequence[Union[pd.Series, Literal[0]]]: """Returns the sizes of developing and developed basins for a given node""" temp = basin[basin["BCU_name"] == node] print(temp) sizes = temp.pivot_table(index=["STATUS"], aggfunc="size") print(sizes) # sizes_### = sizes["###"] if "###" in sizes.index else 0 sizes_dev = sizes["DEV"] if "DEV" in sizes.index else 0 sizes_ind = sizes["IND"] if "IND" in sizes.index else 0 return_tuple: tuple[Union[pd.Series, Literal[0]], Union[pd.Series, Literal[0]]] = ( sizes_dev, sizes_ind, ) # type: ignore # Somehow, mypy is unable to recognize the proper type without forcing it return return_tuple
[docs] def set_target_rate(df: pd.DataFrame, node: str, year: int, target: float) -> None: """Sets the target value for a given node and year""" indices = df[df["node"] == node][df[df["node"] == node]["year"] == year].index for index in indices: if ( df[df["node"] == node][df[df["node"] == node]["year"] == year].at[ index, "value" ] < target ): df.at[index, "value"] = target
[docs] def set_target_rate_developed(df: pd.DataFrame, node: str, target: float) -> None: """Sets target rate for a developed basin""" set_target_rate(df, node, 2030, target)
[docs] def set_target_rate_developing(df: pd.DataFrame, node: str, target: float) -> None: """Sets target rate for a developing basin""" for i in df.index: if df.at[i, "node"] == node and df.at[i, "year"] == 2030: value_2030 = df.at[i, "value"] break set_target_rate( df, node, 2035, (value_2030 + target) / 2, ) set_target_rate(df, node, 2040, target)
[docs] def set_target_rates(df: pd.DataFrame, basin: pd.DataFrame, val: float) -> None: """Sets target rates for all nodes in a given basin""" for node in df.node.unique(): dev_size, ind_size = get_basin_sizes(basin, node) if dev_size >= ind_size: set_target_rate_developed(df, node, val) else: set_target_rate_developing(df, node, val)
[docs] def target_rate(df: pd.DataFrame, basin: pd.DataFrame, val: float) -> pd.DataFrame: """ Sets target connection and sanitation rates for SDG scenario. The function filters out the basins as developing and developed based on the countries overlapping basins. If the number of developing countries in the basins are more than basin is categorized as developing and vice versa. If the number of developing and developed countries are equal in a basin, then the basin is assumed developing. For developed basins, target is set at 2030. For developing basins, the access target is set at 2040 and 2035 target is the average of 2030 original rate and 2040 target. Returns ------- df (pandas.DataFrame): Data frame with updated value column. """ set_target_rates(df, basin, val) return df
[docs] def target_rate_trt(df: pd.DataFrame, basin: pd.DataFrame) -> pd.DataFrame: """ Sets target treatment rates for SDG scenario. The target value for developed and developing region is making sure that the amount of untreated wastewater is halved beyond 2030 & 2040 respectively. Returns ------- data : pandas.DataFrame """ value = [] for i in df.node.unique(): temp = basin[basin["BCU_name"] == i] sizes = temp.pivot_table(index=["STATUS"], aggfunc="size") if len(sizes) > 1: if sizes["DEV"] > sizes["IND"] or sizes["DEV"] == sizes["IND"]: for j in df[df["node"] == i][df[df["node"] == i]["year"] >= 2040].index: temp = df[df["node"] == i][df[df["node"] == i]["year"] >= 2040].at[ j, "value" ] temp = temp + (1 - temp) / 2 value.append([j, np.float64(temp)]) else: for j in df[df["node"] == i][df[df["node"] == i]["year"] >= 2030].index: temp = df[df["node"] == i][df[df["node"] == i]["year"] >= 2030].at[ j, "value" ] temp = temp + (1 - temp) / 2 value.append([j, np.float64(temp)]) else: if sizes.index[0] == "DEV": for j in df[df["node"] == i][df[df["node"] == i]["year"] >= 2040].index: temp = df[df["node"] == i][df[df["node"] == i]["year"] >= 2040].at[ j, "value" ] temp = temp + (1 - temp) / 2 value.append([j, np.float64(temp)]) else: for j in df[df["node"] == i][df[df["node"] == i]["year"] >= 2030].index: temp = df[df["node"] == i][df[df["node"] == i]["year"] >= 2030].at[ j, "value" ] temp = temp + (1 - temp) / 2 value.append([j, np.float64(temp)]) valuetest = pd.DataFrame(data=value, columns=["Index", "Value"]) for i in range(len(valuetest["Index"])): df.at[valuetest["Index"][i], "Value"] = valuetest["Value"][i] real_value = df["Value"].combine_first(df["value"]) df.drop(["value", "Value"], axis=1, inplace=True) df["value"] = real_value return df
[docs] @minimum_version("message_ix 3.7") def add_sectoral_demands(context: "Context") -> dict[str, pd.DataFrame]: """ Adds water sectoral demands Parameters ---------- context : .Context Returns ------- data : dict of (str -> pandas.DataFrame) Keys are MESSAGE parameter names such as 'input', 'fix_cost'. Values are data frames ready for :meth:`~.Scenario.add_par`. """ # define an empty dictionary results = {} # Reference to the water configuration info = context["water build info"] # defines path to read in demand data region = f"{context.regions}" sub_time = context.time path = package_data_path("water", "demands", "harmonized", region, ".") # make sure all of the csvs have format, otherwise it might not work list_of_csvs = list(path.glob("ssp2_regional_*.csv")) # define names for variables fns = [os.path.splitext(os.path.basename(x))[0] for x in list_of_csvs] fns = " ".join(fns).replace("ssp2_regional_", "").split() # dictionary for reading csv files d: dict[str, pd.DataFrame] = {} for i in range(len(fns)): d[fns[i]] = pd.read_csv(list_of_csvs[i]) # d is a dictionary that have ist of dataframes read in this folder dfs = {} for key, df in d.items(): df.rename(columns={"Unnamed: 0": "year"}, inplace=True) df.set_index("year", inplace=True) dfs[key] = df # convert the dictionary of dataframes to xarray df_x = xr.Dataset(dfs).to_array() df_x_interp = df_x.interp(year=[2015, 2025, 2035, 2045, 2055]) df_x_c = df_x.combine_first(df_x_interp) # Unstack xarray back to pandas dataframe df_f = df_x_c.to_dataframe("").unstack() # Format the dataframe to be compatible with message format df_dmds = df_f.stack(future_stack=True).reset_index(level=0).reset_index() df_dmds.columns = ["year", "node", "variable", "value"] df_dmds.sort_values(["year", "node", "variable", "value"], inplace=True) df_dmds["time"] = "year" # Write final interpolated values as csv # df2_f.to_csv('final_interpolated_values.csv') # if we are using sub-annual timesteps we replace the rural and municipal # withdrawals and return flows with monthly data and also add industrial if "year" not in context.time: PATH = package_data_path( "water", "demands", "harmonized", region, "ssp2_m_water_demands.csv" ) df_m: pd.DataFrame = pd.read_csv(PATH) df_m.value *= 30 # from mcm/day to mcm/month df_m.loc[df_m["sector"] == "industry", "sector"] = "manufacturing" df_m["variable"] = df_m["sector"] + "_" + df_m["type"] + "_baseline" df_m.loc[df_m["variable"] == "urban_withdrawal_baseline", "variable"] = ( "urbann_withdrawal2_baseline" ) df_m.loc[df_m["variable"] == "urban_return_baseline", "variable"] = ( "urbann_return2_baseline" ) df_m = df_m[["year", "pid", "variable", "value", "month"]] df_m.columns = pd.Index(["year", "node", "variable", "value", "time"]) # remove yearly parts from df_dms df_dmds = df_dmds[ ~df_dmds["variable"].isin( [ "urban_withdrawal2_baseline", "rural_withdrawal_baseline", "manufacturing_withdrawal_baseline", "manufacturing_return_baseline", "urban_return2_baseline", "rural_return_baseline", ] ) ] # attach the monthly demand df_dmds = pd.concat([df_dmds, df_m]) urban_withdrawal_df = df_dmds[df_dmds["variable"] == "urban_withdrawal2_baseline"] rual_withdrawal_df = df_dmds[df_dmds["variable"] == "rural_withdrawal_baseline"] industrial_withdrawals_df = df_dmds[ df_dmds["variable"] == "manufacturing_withdrawal_baseline" ] industrial_return_df = df_dmds[ df_dmds["variable"] == "manufacturing_return_baseline" ] urban_return_df = df_dmds[df_dmds["variable"] == "urban_return2_baseline"] urban_return_df.reset_index(drop=True, inplace=True) rural_return_df = df_dmds[df_dmds["variable"] == "rural_return_baseline"] rural_return_df.reset_index(drop=True, inplace=True) urban_connection_rate_df = df_dmds[ df_dmds["variable"] == "urban_connection_rate_baseline" ] urban_connection_rate_df.reset_index(drop=True, inplace=True) rural_connection_rate_df = df_dmds[ df_dmds["variable"] == "rural_connection_rate_baseline" ] rural_connection_rate_df.reset_index(drop=True, inplace=True) urban_treatment_rate_df = df_dmds[ df_dmds["variable"] == "urban_treatment_rate_baseline" ] urban_treatment_rate_df.reset_index(drop=True, inplace=True) rural_treatment_rate_df = df_dmds[ df_dmds["variable"] == "rural_treatment_rate_baseline" ] rural_treatment_rate_df.reset_index(drop=True, inplace=True) df_recycling = df_dmds[df_dmds["variable"] == "urban_recycling_rate_baseline"] df_recycling.reset_index(drop=True, inplace=True) all_rates_base = pd.concat( [ urban_connection_rate_df, rural_connection_rate_df, urban_treatment_rate_df, rural_treatment_rate_df, df_recycling, ] ) if context.SDG != "baseline": # only if SDG exactly equal to SDG, otherwise other policies are possible if context.SDG == "SDG": # reading basin mapping to countries FILE2 = f"basins_country_{context.regions}.csv" PATH = package_data_path("water", "delineation", FILE2) df_basin = pd.read_csv(PATH) # Applying 80% sanitation rate for rural sanitation rural_treatment_rate_df = rural_treatment_rate_df_sdg = target_rate( rural_treatment_rate_df, df_basin, 0.8 ) # Applying 95% sanitation rate for urban sanitation urban_treatment_rate_df = urban_treatment_rate_df_sdg = target_rate( urban_treatment_rate_df, df_basin, 0.95 ) # Applying 99% connection rate for urban infrastructure urban_connection_rate_df = urban_connection_rate_df_sdg = target_rate( urban_connection_rate_df, df_basin, 0.99 ) # Applying 80% connection rate for rural infrastructure rural_connection_rate_df = rural_connection_rate_df_sdg = target_rate( rural_connection_rate_df, df_basin, 0.8 ) # Applying sdg6 waste water treatment target df_recycling = df_recycling_sdg = target_rate_trt(df_recycling, df_basin) else: pol_scen = context.SDG # check if data is there check_dm = df_dmds[ df_dmds["variable"] == "urban_connection_rate_" + pol_scen ] if check_dm.empty: raise ValueError(f"Policy data is missing for the {pol_scen} scenario.") urban_connection_rate_df = urban_connection_rate_df_sdg = df_dmds[ df_dmds["variable"] == "urban_connection_rate_" + pol_scen ] urban_connection_rate_df.reset_index(drop=True, inplace=True) rural_connection_rate_df = rural_connection_rate_df_sdg = df_dmds[ df_dmds["variable"] == "rural_connection_rate_" + pol_scen ] rural_connection_rate_df.reset_index(drop=True, inplace=True) urban_treatment_rate_df = urban_treatment_rate_df_sdg = df_dmds[ df_dmds["variable"] == "urban_treatment_rate_" + pol_scen ] urban_treatment_rate_df.reset_index(drop=True, inplace=True) rural_treatment_rate_df = rural_treatment_rate_df_sdg = df_dmds[ df_dmds["variable"] == "rural_treatment_rate_" + pol_scen ] rural_treatment_rate_df.reset_index(drop=True, inplace=True) df_recycling = df_recycling_sdg = df_dmds[ df_dmds["variable"] == "urban_recycling_rate_" + pol_scen ] df_recycling.reset_index(drop=True, inplace=True) all_rates_sdg = pd.concat( [ urban_connection_rate_df_sdg, rural_connection_rate_df_sdg, urban_treatment_rate_df_sdg, rural_treatment_rate_df_sdg, df_recycling_sdg, ] ) all_rates_sdg["variable"] = [ x.replace("baseline", pol_scen) for x in all_rates_sdg["variable"] ] all_rates = pd.concat([all_rates_base, all_rates_sdg]) save_path = package_data_path("water", "demands", "harmonized", context.regions) # save all the rates for reporting purposes all_rates.to_csv(save_path / "all_rates_SSP2.csv", index=False) # urban water demand and return. 1e-3 from mcm to km3 urban_mw = urban_withdrawal_df.reset_index(drop=True) urban_mw = urban_mw.merge( urban_connection_rate_df.drop(columns=["variable", "time"]).rename( columns={"value": "rate"} ) ) urban_mw["value"] = (1e-3 * urban_mw["value"]) * urban_mw["rate"] dmd_df = make_df( "demand", node="B" + urban_mw["node"], commodity="urban_mw", level="final", year=urban_mw["year"], time=urban_mw["time"], value=urban_mw["value"], unit="km3/year", ) urban_dis = urban_withdrawal_df.reset_index(drop=True) urban_dis = urban_dis.merge( urban_connection_rate_df.drop(columns=["variable", "time"]).rename( columns={"value": "rate"} ) ) urban_dis["value"] = (1e-3 * urban_dis["value"]) * (1 - urban_dis["rate"]) dmd_df = pd.concat( [ dmd_df, make_df( "demand", node="B" + urban_dis["node"], commodity="urban_disconnected", level="final", year=urban_dis["year"], time=urban_dis["time"], value=urban_dis["value"], unit="km3/year", ), ] ) # rural water demand and return rural_mw = rual_withdrawal_df.reset_index(drop=True) rural_mw = rural_mw.merge( rural_connection_rate_df.drop(columns=["variable", "time"]).rename( columns={"value": "rate"} ) ) rural_mw["value"] = (1e-3 * rural_mw["value"]) * rural_mw["rate"] dmd_df = pd.concat( [ dmd_df, make_df( "demand", node="B" + rural_mw["node"], commodity="rural_mw", level="final", year=rural_mw["year"], time=rural_mw["time"], value=rural_mw["value"], unit="km3/year", ), ] ) rural_dis = rual_withdrawal_df.reset_index(drop=True) rural_dis = rural_dis.merge( rural_connection_rate_df.drop(columns=["variable", "time"]).rename( columns={"value": "rate"} ) ) rural_dis["value"] = (1e-3 * rural_dis["value"]) * (1 - rural_dis["rate"]) dmd_df = pd.concat( [ dmd_df, make_df( "demand", node="B" + rural_dis["node"], commodity="rural_disconnected", level="final", year=rural_dis["year"], time=rural_dis["time"], value=rural_dis["value"], unit="km3/year", ), ] ) # manufactury/ industry water demand and return manuf_mw = industrial_withdrawals_df.reset_index(drop=True) manuf_mw["value"] = 1e-3 * manuf_mw["value"] dmd_df = pd.concat( [ dmd_df, make_df( "demand", node="B" + manuf_mw["node"], commodity="industry_mw", level="final", year=manuf_mw["year"], time=manuf_mw["time"], value=manuf_mw["value"], unit="km3/year", ), ] ) manuf_uncollected_wst = industrial_return_df.reset_index(drop=True) manuf_uncollected_wst["value"] = 1e-3 * manuf_uncollected_wst["value"] dmd_df = pd.concat( [ dmd_df, make_df( "demand", node="B" + manuf_uncollected_wst["node"], commodity="industry_uncollected_wst", level="final", year=manuf_uncollected_wst["year"], time=manuf_uncollected_wst["time"], value=-manuf_uncollected_wst["value"], unit="km3/year", ), ] ) urban_collected_wst = urban_return_df.reset_index(drop=True) urban_collected_wst = urban_collected_wst.merge( urban_treatment_rate_df.drop(columns=["variable", "time"]).rename( columns={"value": "rate"} ) ) urban_collected_wst["value"] = ( 1e-3 * urban_collected_wst["value"] ) * urban_collected_wst["rate"] dmd_df = pd.concat( [ dmd_df, make_df( "demand", node="B" + urban_collected_wst["node"], commodity="urban_collected_wst", level="final", year=urban_collected_wst["year"], time=urban_collected_wst["time"], value=-urban_collected_wst["value"], unit="km3/year", ), ] ) rural_collected_wst = rural_return_df.reset_index(drop=True) rural_collected_wst = rural_collected_wst.merge( rural_treatment_rate_df.drop(columns=["variable", "time"]).rename( columns={"value": "rate"} ) ) rural_collected_wst["value"] = ( 1e-3 * rural_collected_wst["value"] ) * rural_collected_wst["rate"] dmd_df = pd.concat( [ dmd_df, make_df( "demand", node="B" + rural_collected_wst["node"], commodity="rural_collected_wst", level="final", year=rural_collected_wst["year"], time=rural_collected_wst["time"], value=-rural_collected_wst["value"], unit="km3/year", ), ] ) urban_uncollected_wst = urban_return_df.reset_index(drop=True) urban_uncollected_wst = urban_uncollected_wst.merge( urban_treatment_rate_df.drop(columns=["variable", "time"]).rename( columns={"value": "rate"} ) ) urban_uncollected_wst["value"] = (1e-3 * urban_uncollected_wst["value"]) * ( 1 - urban_uncollected_wst["rate"] ) dmd_df = pd.concat( [ dmd_df, make_df( "demand", node="B" + urban_uncollected_wst["node"], commodity="urban_uncollected_wst", level="final", year=urban_uncollected_wst["year"], time=urban_uncollected_wst["time"], value=-urban_uncollected_wst["value"], unit="km3/year", ), ] ) rural_uncollected_wst = rural_return_df.reset_index(drop=True) rural_uncollected_wst = rural_uncollected_wst.merge( rural_treatment_rate_df.drop(columns=["variable", "time"]).rename( columns={"value": "rate"} ) ) rural_uncollected_wst["value"] = (1e-3 * rural_uncollected_wst["value"]) * ( 1 - rural_uncollected_wst["rate"] ) dmd_df = pd.concat( [ dmd_df, make_df( "demand", node="B" + rural_uncollected_wst["node"], commodity="rural_uncollected_wst", level="final", year=rural_uncollected_wst["year"], time=rural_uncollected_wst["time"], value=-rural_uncollected_wst["value"], unit="km3/year", ), ] ) # Add 2010 & 2015 values as historical activities to corresponding technologies h_act = dmd_df[dmd_df["year"].isin([2010, 2015])] dmd_df = dmd_df[dmd_df["year"].isin(info.Y)] results["demand"] = dmd_df # create a list of our conditions conditions = [ (h_act["commodity"] == "urban_mw"), (h_act["commodity"] == "industry_mw"), (h_act["commodity"] == "rural_mw"), (h_act["commodity"] == "urban_disconnected"), (h_act["commodity"] == "rural_disconnected"), (h_act["commodity"] == "urban_collected_wst"), (h_act["commodity"] == "rural_collected_wst"), (h_act["commodity"] == "urban_uncollected_wst"), (h_act["commodity"] == "industry_uncollected_wst"), (h_act["commodity"] == "rural_uncollected_wst"), ] # create a list of the values we want to assign for each condition values = [ "urban_t_d", "industry_unconnected", "rural_t_d", "urban_unconnected", "rural_unconnected", "urban_sewerage", "rural_sewerage", "urban_untreated", "industry_untreated", "rural_untreated", ] # create a new column and use np.select to assign # values to it using our lists as arguments h_act["commodity"] = np.select(conditions, values, "Unknown commodity") h_act["value"] = h_act["value"].abs() hist_act = make_df( "historical_activity", node_loc=h_act["node"], technology=h_act["commodity"], year_act=h_act["year"], mode="M1", time=h_act["time"], value=h_act["value"], unit="km3/year", ) results["historical_activity"] = hist_act h_cap = h_act[h_act["year"] >= 2015] h_cap = ( h_cap.groupby(["node", "commodity", "level", "year", "unit"])["value"] .sum() .reset_index() ) hist_cap = make_df( "historical_new_capacity", node_loc=h_cap["node"], technology=h_cap["commodity"], year_vtg=h_cap["year"], value=h_cap["value"] / 5, unit="km3/year", ) results["historical_new_capacity"] = hist_cap # share constraint lower bound on urban_Water recycling df_share_wat = make_df( "share_commodity_lo", shares="share_wat_recycle", node_share="B" + df_recycling["node"], year_act=df_recycling["year"], value=df_recycling["value"], unit="-", ).pipe( broadcast, time=pd.Series(sub_time), ) df_share_wat = df_share_wat[df_share_wat["year_act"].isin(info.Y)] results["share_commodity_lo"] = df_share_wat # rel = make_df( # "relation_activity", # relation="recycle_rel", # node_rel="B" + df_recycling["node"], # year_rel=df_recycling["year"], # node_loc="B" + df_recycling["node"], # technology="urban_recycle", # year_act=df_recycling["year"], # mode="M1", # value=-df_recycling["value"], # unit="-", # ) # rel = rel.append( # make_df( # "relation_activity", # relation="recycle_rel", # node_rel="B" + df_recycling["node"], # year_rel=df_recycling["year"], # node_loc="B" + df_recycling["node"], # technology="urban_sewerage", # year_act=df_recycling["year"], # mode="M1", # value=1, # unit="-", # ) # ) # results["relation_activity"] = rel # rel_lo = make_df( # "relation_lower", # relation="recycle_rel", # node_rel="B" + df_recycling["node"], # value=0, # unit="-", # ).pipe(broadcast, year_rel=info.Y) # results["relation_lower"] = rel_lo # rel_up = make_df( # "relation_upper", # relation="recycle_rel", # node_rel="B" + df_recycling["node"], # value=0, # unit="-", # ).pipe(broadcast, year_rel=info.Y) # results["relation_upper"] = rel_up return results
[docs] def read_water_availability(context: "Context") -> Sequence[pd.DataFrame]: """ Reads water availability data and bias correct it for the historical years and no climate scenario assumptions. Parameters ---------- context : .Context Returns ------- data : (pd.DataFrame, pd.DataFrame) """ # Reference to the water configuration info = context["water build info"] # reading sample for assiging basins PATH = package_data_path( "water", "delineation", f"basins_by_region_simpl_{context.regions}.csv" ) df_x = pd.read_csv(PATH) if "year" in context.time: # path for reading basin delineation file PATH = package_data_path( "water", "delineation", f"basins_by_region_simpl_{context.regions}.csv" ) df_x = pd.read_csv(PATH) # Adding freshwater supply constraints # Reading data, the data is spatially and temprally aggregated from GHMs path1 = package_data_path( "water", "availability", f"qtot_5y_{context.RCP}_{context.REL}_{context.regions}.csv", ) # Read rcp 2.6 data df_sw = pd.read_csv(path1) df_sw.drop(["Unnamed: 0"], axis=1, inplace=True) df_sw.index = df_x["BCU_name"].index df_sw = df_sw.stack().reset_index() df_sw.columns = pd.Index(["Region", "years", "value"]) df_sw.fillna(0, inplace=True) df_sw.reset_index(drop=True, inplace=True) df_sw["year"] = pd.DatetimeIndex(df_sw["years"]).year df_sw["time"] = "year" df_sw2210 = df_sw[df_sw["year"] == 2100].copy() df_sw2210.loc["year"] = 2110 df_sw = pd.concat([df_sw, df_sw2210]) df_sw = df_sw[df_sw["year"].isin(info.Y)] # Adding groundwater supply constraints # Reading data, the data is spatially and temprally aggregated from GHMs path1 = package_data_path( "water", "availability", f"qr_5y_{context.RCP}_{context.REL}_{context.regions}.csv", ) # Read groundwater data df_gw = pd.read_csv(path1) df_gw.drop(["Unnamed: 0"], axis=1, inplace=True) df_gw.index = df_x["BCU_name"].index df_gw = df_gw.stack().reset_index() df_gw.columns = pd.Index(["Region", "years", "value"]) df_gw.fillna(0, inplace=True) df_gw.reset_index(drop=True, inplace=True) df_gw["year"] = pd.DatetimeIndex(df_gw["years"]).year df_gw["time"] = "year" df_gw2210 = df_gw[df_gw["year"] == 2100].copy() df_gw2210.loc["year"] = 2110 df_gw = pd.concat([df_gw, df_gw2210]) df_gw = df_gw[df_gw["year"].isin(info.Y)] else: # Adding freshwater supply constraints # Reading data, the data is spatially and temprally aggregated from GHMs path1 = package_data_path( "water", "availability", f"qtot_5y_m_{context.RCP}_{context.REL}_{context.regions}.csv", ) df_sw = pd.read_csv(path1) df_sw.drop(["Unnamed: 0"], axis=1, inplace=True) df_sw.index = df_x["BCU_name"].index df_sw = df_sw.stack().reset_index() df_sw.columns = pd.Index(["Region", "years", "value"]) df_sw.sort_values(["Region", "years", "value"], inplace=True) df_sw.fillna(0, inplace=True) df_sw.reset_index(drop=True, inplace=True) df_sw["year"] = pd.DatetimeIndex(df_sw["years"]).year df_sw["time"] = pd.DatetimeIndex(df_sw["years"]).month df_sw2210 = df_sw[df_sw["year"] == 2100].copy() df_sw2210.loc["year"] = 2110 df_sw = pd.concat([df_sw, df_sw2210]) df_sw = df_sw[df_sw["year"].isin(info.Y)] # Reading data, the data is spatially and temporally aggregated from GHMs path1 = package_data_path( "water", "availability", f"qr_5y_m_{context.RCP}_{context.REL}_{context.regions}.csv", ) df_gw = pd.read_csv(path1) df_gw.drop(["Unnamed: 0"], axis=1, inplace=True) df_gw.index = df_x["BCU_name"].index df_gw = df_gw.stack().reset_index() df_gw.columns = pd.Index(["Region", "years", "value"]) df_gw.sort_values(["Region", "years", "value"], inplace=True) df_gw.fillna(0, inplace=True) df_gw.reset_index(drop=True, inplace=True) df_gw["year"] = pd.DatetimeIndex(df_gw["years"]).year df_gw["time"] = pd.DatetimeIndex(df_gw["years"]).month df_gw2210 = df_gw[df_gw["year"] == 2100].copy() df_gw2210.loc["year"] = 2110 df_gw = pd.concat([df_gw, df_gw2210]) df_gw = df_gw[df_gw["year"].isin(info.Y)] return df_sw, df_gw
[docs] def add_water_availability(context: "Context") -> dict[str, pd.DataFrame]: """ Adds water supply constraints Parameters ---------- context : .Context Returns ------- data : dict of (str -> pandas.DataFrame) Keys are MESSAGE parameter names such as 'input', 'fix_cost'. Values are data frames ready for :meth:`~.Scenario.add_par`. """ # define an empty dictionary results = {} # Adding freshwater supply constraints # Reading data, the data is spatially and temprally aggregated from GHMs df_sw, df_gw = read_water_availability(context) dmd_df = make_df( "demand", node="B" + df_sw["Region"].astype(str), commodity="surfacewater_basin", level="water_avail_basin", year=df_sw["year"], time=df_sw["time"], value=-df_sw["value"], unit="km3/year", ) dmd_df = pd.concat( [ dmd_df, make_df( "demand", node="B" + df_gw["Region"].astype(str), commodity="groundwater_basin", level="water_avail_basin", year=df_gw["year"], time=df_gw["time"], value=-df_gw["value"], unit="km3/year", ), ] ) dmd_df["value"] = dmd_df["value"].apply(lambda x: x if x <= 0 else 0) results["demand"] = dmd_df # share constraint lower bound on groundwater df_share = make_df( "share_commodity_lo", shares="share_low_lim_GWat", node_share="B" + df_gw["Region"].astype(str), year_act=df_gw["year"], time=df_gw["time"], value=df_gw["value"] / (df_sw["value"] + df_gw["value"]) * 0.95, # 0.95 buffer factor to avoid numerical error unit="-", ) df_share["value"] = df_share["value"].fillna(0) results["share_commodity_lo"] = df_share return results
[docs] def add_irrigation_demand(context: "Context") -> dict[str, pd.DataFrame]: """ Adds endogenous irrigation water demands from GLOBIOM emulator Parameters ---------- context : .Context Returns ------- data : dict of (str -> pandas.DataFrame) Keys are MESSAGE parameter names such as 'input', 'fix_cost'. Values are data frames ready for :meth:`~.Scenario.add_par`. """ # define an empty dictionary results = {} scen = context.get_scenario() # add water for irrigation from globiom land_out_1 = scen.par( "land_output", {"commodity": "Water|Withdrawal|Irrigation|Cereals"} ) land_out_1["level"] = "irr_cereal" land_out_2 = scen.par( "land_output", {"commodity": "Water|Withdrawal|Irrigation|Oilcrops"} ) land_out_2["level"] = "irr_oilcrops" land_out_3 = scen.par( "land_output", {"commodity": "Water|Withdrawal|Irrigation|Sugarcrops"} ) land_out_3["level"] = "irr_sugarcrops" land_out = pd.concat([land_out_1, land_out_2, land_out_3]) land_out["commodity"] = "freshwater" land_out["value"] = 1e-3 * land_out["value"] # take land_out edited and add as a demand in land_input results["land_input"] = land_out return results