"""Prepare data for adding demands"""
import os
from collections.abc import Sequence
from typing import TYPE_CHECKING, Literal, Union
import numpy as np
import pandas as pd
import xarray as xr
from message_ix import make_df
from message_ix_models.util import broadcast, minimum_version, package_data_path
if TYPE_CHECKING:
from message_ix_models import Context
[docs]def get_basin_sizes(
basin: pd.DataFrame, node: str
) -> Sequence[Union[pd.Series, Literal[0]]]:
"""Returns the sizes of developing and developed basins for a given node"""
temp = basin[basin["BCU_name"] == node]
print(temp)
sizes = temp.pivot_table(index=["STATUS"], aggfunc="size")
print(sizes)
# sizes_### = sizes["###"] if "###" in sizes.index else 0
sizes_dev = sizes["DEV"] if "DEV" in sizes.index else 0
sizes_ind = sizes["IND"] if "IND" in sizes.index else 0
return_tuple: tuple[Union[pd.Series, Literal[0]], Union[pd.Series, Literal[0]]] = (
sizes_dev,
sizes_ind,
) # type: ignore # Somehow, mypy is unable to recognize the proper type without forcing it
return return_tuple
[docs]def set_target_rate(df: pd.DataFrame, node: str, year: int, target: float) -> None:
"""Sets the target value for a given node and year"""
indices = df[df["node"] == node][df[df["node"] == node]["year"] == year].index
for index in indices:
if (
df[df["node"] == node][df[df["node"] == node]["year"] == year].at[
index, "value"
]
< target
):
df.at[index, "value"] = target
[docs]def set_target_rate_developed(df: pd.DataFrame, node: str, target: float) -> None:
"""Sets target rate for a developed basin"""
set_target_rate(df, node, 2030, target)
[docs]def set_target_rate_developing(df: pd.DataFrame, node: str, target: float) -> None:
"""Sets target rate for a developing basin"""
for i in df.index:
if df.at[i, "node"] == node and df.at[i, "year"] == 2030:
value_2030 = df.at[i, "value"]
break
set_target_rate(
df,
node,
2035,
(value_2030 + target) / 2,
)
set_target_rate(df, node, 2040, target)
[docs]def set_target_rates(df: pd.DataFrame, basin: pd.DataFrame, val: float) -> None:
"""Sets target rates for all nodes in a given basin"""
for node in df.node.unique():
dev_size, ind_size = get_basin_sizes(basin, node)
if dev_size >= ind_size:
set_target_rate_developed(df, node, val)
else:
set_target_rate_developing(df, node, val)
[docs]def target_rate(df: pd.DataFrame, basin: pd.DataFrame, val: float) -> pd.DataFrame:
"""
Sets target connection and sanitation rates for SDG scenario.
The function filters out the basins as developing and
developed based on the countries overlapping basins.
If the number of developing countries in the basins are
more than basin is categorized as developing and vice versa.
If the number of developing and developed countries are equal
in a basin, then the basin is assumed developing.
For developed basins, target is set at 2030.
For developing basins, the access target is set at
2040 and 2035 target is the average of
2030 original rate and 2040 target.
Returns
-------
df (pandas.DataFrame): Data frame with updated value column.
"""
set_target_rates(df, basin, val)
return df
[docs]def target_rate_trt(df: pd.DataFrame, basin: pd.DataFrame) -> pd.DataFrame:
"""
Sets target treatment rates for SDG scenario. The target value for
developed and developing region is making sure that the amount of untreated
wastewater is halved beyond 2030 & 2040 respectively.
Returns
-------
data : pandas.DataFrame
"""
value = []
for i in df.node.unique():
temp = basin[basin["BCU_name"] == i]
sizes = temp.pivot_table(index=["STATUS"], aggfunc="size")
if len(sizes) > 1:
if sizes["DEV"] > sizes["IND"] or sizes["DEV"] == sizes["IND"]:
for j in df[df["node"] == i][df[df["node"] == i]["year"] >= 2040].index:
temp = df[df["node"] == i][df[df["node"] == i]["year"] >= 2040].at[
j, "value"
]
temp = temp + (1 - temp) / 2
value.append([j, np.float64(temp)])
else:
for j in df[df["node"] == i][df[df["node"] == i]["year"] >= 2030].index:
temp = df[df["node"] == i][df[df["node"] == i]["year"] >= 2030].at[
j, "value"
]
temp = temp + (1 - temp) / 2
value.append([j, np.float64(temp)])
else:
if sizes.index[0] == "DEV":
for j in df[df["node"] == i][df[df["node"] == i]["year"] >= 2040].index:
temp = df[df["node"] == i][df[df["node"] == i]["year"] >= 2040].at[
j, "value"
]
temp = temp + (1 - temp) / 2
value.append([j, np.float64(temp)])
else:
for j in df[df["node"] == i][df[df["node"] == i]["year"] >= 2030].index:
temp = df[df["node"] == i][df[df["node"] == i]["year"] >= 2030].at[
j, "value"
]
temp = temp + (1 - temp) / 2
value.append([j, np.float64(temp)])
valuetest = pd.DataFrame(data=value, columns=["Index", "Value"])
for i in range(len(valuetest["Index"])):
df.at[valuetest["Index"][i], "Value"] = valuetest["Value"][i]
real_value = df["Value"].combine_first(df["value"])
df.drop(["value", "Value"], axis=1, inplace=True)
df["value"] = real_value
return df
[docs]@minimum_version("message_ix 3.7")
def add_sectoral_demands(context: "Context") -> dict[str, pd.DataFrame]:
"""
Adds water sectoral demands
Parameters
----------
context : .Context
Returns
-------
data : dict of (str -> pandas.DataFrame)
Keys are MESSAGE parameter names such as 'input', 'fix_cost'. Values
are data frames ready for :meth:`~.Scenario.add_par`.
"""
# define an empty dictionary
results = {}
# Reference to the water configuration
info = context["water build info"]
# defines path to read in demand data
region = f"{context.regions}"
sub_time = context.time
path = package_data_path("water", "demands", "harmonized", region, ".")
# make sure all of the csvs have format, otherwise it might not work
list_of_csvs = list(path.glob("ssp2_regional_*.csv"))
# define names for variables
fns = [os.path.splitext(os.path.basename(x))[0] for x in list_of_csvs]
fns = " ".join(fns).replace("ssp2_regional_", "").split()
# dictionary for reading csv files
d: dict[str, pd.DataFrame] = {}
for i in range(len(fns)):
d[fns[i]] = pd.read_csv(list_of_csvs[i])
# d is a dictionary that have ist of dataframes read in this folder
dfs = {}
for key, df in d.items():
df.rename(columns={"Unnamed: 0": "year"}, inplace=True)
df.set_index("year", inplace=True)
dfs[key] = df
# convert the dictionary of dataframes to xarray
df_x = xr.Dataset(dfs).to_array()
df_x_interp = df_x.interp(year=[2015, 2025, 2035, 2045, 2055])
df_x_c = df_x.combine_first(df_x_interp)
# Unstack xarray back to pandas dataframe
df_f = df_x_c.to_dataframe("").unstack()
# Format the dataframe to be compatible with message format
df_dmds = df_f.stack(future_stack=True).reset_index(level=0).reset_index()
df_dmds.columns = ["year", "node", "variable", "value"]
df_dmds.sort_values(["year", "node", "variable", "value"], inplace=True)
df_dmds["time"] = "year"
# Write final interpolated values as csv
# df2_f.to_csv('final_interpolated_values.csv')
# if we are using sub-annual timesteps we replace the rural and municipal
# withdrawals and return flows with monthly data and also add industrial
if "year" not in context.time:
PATH = package_data_path(
"water", "demands", "harmonized", region, "ssp2_m_water_demands.csv"
)
df_m: pd.DataFrame = pd.read_csv(PATH)
df_m.value *= 30 # from mcm/day to mcm/month
df_m.loc[df_m["sector"] == "industry", "sector"] = "manufacturing"
df_m["variable"] = df_m["sector"] + "_" + df_m["type"] + "_baseline"
df_m.loc[df_m["variable"] == "urban_withdrawal_baseline", "variable"] = (
"urbann_withdrawal2_baseline"
)
df_m.loc[df_m["variable"] == "urban_return_baseline", "variable"] = (
"urbann_return2_baseline"
)
df_m = df_m[["year", "pid", "variable", "value", "month"]]
df_m.columns = pd.Index(["year", "node", "variable", "value", "time"])
# remove yearly parts from df_dms
df_dmds = df_dmds[
~df_dmds["variable"].isin(
[
"urban_withdrawal2_baseline",
"rural_withdrawal_baseline",
"manufacturing_withdrawal_baseline",
"manufacturing_return_baseline",
"urban_return2_baseline",
"rural_return_baseline",
]
)
]
# attach the monthly demand
df_dmds = pd.concat([df_dmds, df_m])
urban_withdrawal_df = df_dmds[df_dmds["variable"] == "urban_withdrawal2_baseline"]
rual_withdrawal_df = df_dmds[df_dmds["variable"] == "rural_withdrawal_baseline"]
industrial_withdrawals_df = df_dmds[
df_dmds["variable"] == "manufacturing_withdrawal_baseline"
]
industrial_return_df = df_dmds[
df_dmds["variable"] == "manufacturing_return_baseline"
]
urban_return_df = df_dmds[df_dmds["variable"] == "urban_return2_baseline"]
urban_return_df.reset_index(drop=True, inplace=True)
rural_return_df = df_dmds[df_dmds["variable"] == "rural_return_baseline"]
rural_return_df.reset_index(drop=True, inplace=True)
urban_connection_rate_df = df_dmds[
df_dmds["variable"] == "urban_connection_rate_baseline"
]
urban_connection_rate_df.reset_index(drop=True, inplace=True)
rural_connection_rate_df = df_dmds[
df_dmds["variable"] == "rural_connection_rate_baseline"
]
rural_connection_rate_df.reset_index(drop=True, inplace=True)
urban_treatment_rate_df = df_dmds[
df_dmds["variable"] == "urban_treatment_rate_baseline"
]
urban_treatment_rate_df.reset_index(drop=True, inplace=True)
rural_treatment_rate_df = df_dmds[
df_dmds["variable"] == "rural_treatment_rate_baseline"
]
rural_treatment_rate_df.reset_index(drop=True, inplace=True)
df_recycling = df_dmds[df_dmds["variable"] == "urban_recycling_rate_baseline"]
df_recycling.reset_index(drop=True, inplace=True)
all_rates_base = pd.concat(
[
urban_connection_rate_df,
rural_connection_rate_df,
urban_treatment_rate_df,
rural_treatment_rate_df,
df_recycling,
]
)
if context.SDG != "baseline":
# only if SDG exactly equal to SDG, otherwise other policies are possible
if context.SDG == "SDG":
# reading basin mapping to countries
FILE2 = f"basins_country_{context.regions}.csv"
PATH = package_data_path("water", "delineation", FILE2)
df_basin = pd.read_csv(PATH)
# Applying 80% sanitation rate for rural sanitation
rural_treatment_rate_df = rural_treatment_rate_df_sdg = target_rate(
rural_treatment_rate_df, df_basin, 0.8
)
# Applying 95% sanitation rate for urban sanitation
urban_treatment_rate_df = urban_treatment_rate_df_sdg = target_rate(
urban_treatment_rate_df, df_basin, 0.95
)
# Applying 99% connection rate for urban infrastructure
urban_connection_rate_df = urban_connection_rate_df_sdg = target_rate(
urban_connection_rate_df, df_basin, 0.99
)
# Applying 80% connection rate for rural infrastructure
rural_connection_rate_df = rural_connection_rate_df_sdg = target_rate(
rural_connection_rate_df, df_basin, 0.8
)
# Applying sdg6 waste water treatment target
df_recycling = df_recycling_sdg = target_rate_trt(df_recycling, df_basin)
else:
pol_scen = context.SDG
# check if data is there
check_dm = df_dmds[
df_dmds["variable"] == "urban_connection_rate_" + pol_scen
]
if check_dm.empty:
raise ValueError(f"Policy data is missing for the {pol_scen} scenario.")
urban_connection_rate_df = urban_connection_rate_df_sdg = df_dmds[
df_dmds["variable"] == "urban_connection_rate_" + pol_scen
]
urban_connection_rate_df.reset_index(drop=True, inplace=True)
rural_connection_rate_df = rural_connection_rate_df_sdg = df_dmds[
df_dmds["variable"] == "rural_connection_rate_" + pol_scen
]
rural_connection_rate_df.reset_index(drop=True, inplace=True)
urban_treatment_rate_df = urban_treatment_rate_df_sdg = df_dmds[
df_dmds["variable"] == "urban_treatment_rate_" + pol_scen
]
urban_treatment_rate_df.reset_index(drop=True, inplace=True)
rural_treatment_rate_df = rural_treatment_rate_df_sdg = df_dmds[
df_dmds["variable"] == "rural_treatment_rate_" + pol_scen
]
rural_treatment_rate_df.reset_index(drop=True, inplace=True)
df_recycling = df_recycling_sdg = df_dmds[
df_dmds["variable"] == "urban_recycling_rate_" + pol_scen
]
df_recycling.reset_index(drop=True, inplace=True)
all_rates_sdg = pd.concat(
[
urban_connection_rate_df_sdg,
rural_connection_rate_df_sdg,
urban_treatment_rate_df_sdg,
rural_treatment_rate_df_sdg,
df_recycling_sdg,
]
)
all_rates_sdg["variable"] = [
x.replace("baseline", pol_scen) for x in all_rates_sdg["variable"]
]
all_rates = pd.concat([all_rates_base, all_rates_sdg])
save_path = package_data_path("water", "demands", "harmonized", context.regions)
# save all the rates for reporting purposes
all_rates.to_csv(save_path / "all_rates_SSP2.csv", index=False)
# urban water demand and return. 1e-3 from mcm to km3
urban_mw = urban_withdrawal_df.reset_index(drop=True)
urban_mw = urban_mw.merge(
urban_connection_rate_df.drop(columns=["variable", "time"]).rename(
columns={"value": "rate"}
)
)
urban_mw["value"] = (1e-3 * urban_mw["value"]) * urban_mw["rate"]
dmd_df = make_df(
"demand",
node="B" + urban_mw["node"],
commodity="urban_mw",
level="final",
year=urban_mw["year"],
time=urban_mw["time"],
value=urban_mw["value"],
unit="km3/year",
)
urban_dis = urban_withdrawal_df.reset_index(drop=True)
urban_dis = urban_dis.merge(
urban_connection_rate_df.drop(columns=["variable", "time"]).rename(
columns={"value": "rate"}
)
)
urban_dis["value"] = (1e-3 * urban_dis["value"]) * (1 - urban_dis["rate"])
dmd_df = pd.concat(
[
dmd_df,
make_df(
"demand",
node="B" + urban_dis["node"],
commodity="urban_disconnected",
level="final",
year=urban_dis["year"],
time=urban_dis["time"],
value=urban_dis["value"],
unit="km3/year",
),
]
)
# rural water demand and return
rural_mw = rual_withdrawal_df.reset_index(drop=True)
rural_mw = rural_mw.merge(
rural_connection_rate_df.drop(columns=["variable", "time"]).rename(
columns={"value": "rate"}
)
)
rural_mw["value"] = (1e-3 * rural_mw["value"]) * rural_mw["rate"]
dmd_df = pd.concat(
[
dmd_df,
make_df(
"demand",
node="B" + rural_mw["node"],
commodity="rural_mw",
level="final",
year=rural_mw["year"],
time=rural_mw["time"],
value=rural_mw["value"],
unit="km3/year",
),
]
)
rural_dis = rual_withdrawal_df.reset_index(drop=True)
rural_dis = rural_dis.merge(
rural_connection_rate_df.drop(columns=["variable", "time"]).rename(
columns={"value": "rate"}
)
)
rural_dis["value"] = (1e-3 * rural_dis["value"]) * (1 - rural_dis["rate"])
dmd_df = pd.concat(
[
dmd_df,
make_df(
"demand",
node="B" + rural_dis["node"],
commodity="rural_disconnected",
level="final",
year=rural_dis["year"],
time=rural_dis["time"],
value=rural_dis["value"],
unit="km3/year",
),
]
)
# manufactury/ industry water demand and return
manuf_mw = industrial_withdrawals_df.reset_index(drop=True)
manuf_mw["value"] = 1e-3 * manuf_mw["value"]
dmd_df = pd.concat(
[
dmd_df,
make_df(
"demand",
node="B" + manuf_mw["node"],
commodity="industry_mw",
level="final",
year=manuf_mw["year"],
time=manuf_mw["time"],
value=manuf_mw["value"],
unit="km3/year",
),
]
)
manuf_uncollected_wst = industrial_return_df.reset_index(drop=True)
manuf_uncollected_wst["value"] = 1e-3 * manuf_uncollected_wst["value"]
dmd_df = pd.concat(
[
dmd_df,
make_df(
"demand",
node="B" + manuf_uncollected_wst["node"],
commodity="industry_uncollected_wst",
level="final",
year=manuf_uncollected_wst["year"],
time=manuf_uncollected_wst["time"],
value=-manuf_uncollected_wst["value"],
unit="km3/year",
),
]
)
urban_collected_wst = urban_return_df.reset_index(drop=True)
urban_collected_wst = urban_collected_wst.merge(
urban_treatment_rate_df.drop(columns=["variable", "time"]).rename(
columns={"value": "rate"}
)
)
urban_collected_wst["value"] = (
1e-3 * urban_collected_wst["value"]
) * urban_collected_wst["rate"]
dmd_df = pd.concat(
[
dmd_df,
make_df(
"demand",
node="B" + urban_collected_wst["node"],
commodity="urban_collected_wst",
level="final",
year=urban_collected_wst["year"],
time=urban_collected_wst["time"],
value=-urban_collected_wst["value"],
unit="km3/year",
),
]
)
rural_collected_wst = rural_return_df.reset_index(drop=True)
rural_collected_wst = rural_collected_wst.merge(
rural_treatment_rate_df.drop(columns=["variable", "time"]).rename(
columns={"value": "rate"}
)
)
rural_collected_wst["value"] = (
1e-3 * rural_collected_wst["value"]
) * rural_collected_wst["rate"]
dmd_df = pd.concat(
[
dmd_df,
make_df(
"demand",
node="B" + rural_collected_wst["node"],
commodity="rural_collected_wst",
level="final",
year=rural_collected_wst["year"],
time=rural_collected_wst["time"],
value=-rural_collected_wst["value"],
unit="km3/year",
),
]
)
urban_uncollected_wst = urban_return_df.reset_index(drop=True)
urban_uncollected_wst = urban_uncollected_wst.merge(
urban_treatment_rate_df.drop(columns=["variable", "time"]).rename(
columns={"value": "rate"}
)
)
urban_uncollected_wst["value"] = (1e-3 * urban_uncollected_wst["value"]) * (
1 - urban_uncollected_wst["rate"]
)
dmd_df = pd.concat(
[
dmd_df,
make_df(
"demand",
node="B" + urban_uncollected_wst["node"],
commodity="urban_uncollected_wst",
level="final",
year=urban_uncollected_wst["year"],
time=urban_uncollected_wst["time"],
value=-urban_uncollected_wst["value"],
unit="km3/year",
),
]
)
rural_uncollected_wst = rural_return_df.reset_index(drop=True)
rural_uncollected_wst = rural_uncollected_wst.merge(
rural_treatment_rate_df.drop(columns=["variable", "time"]).rename(
columns={"value": "rate"}
)
)
rural_uncollected_wst["value"] = (1e-3 * rural_uncollected_wst["value"]) * (
1 - rural_uncollected_wst["rate"]
)
dmd_df = pd.concat(
[
dmd_df,
make_df(
"demand",
node="B" + rural_uncollected_wst["node"],
commodity="rural_uncollected_wst",
level="final",
year=rural_uncollected_wst["year"],
time=rural_uncollected_wst["time"],
value=-rural_uncollected_wst["value"],
unit="km3/year",
),
]
)
# Add 2010 & 2015 values as historical activities to corresponding technologies
h_act = dmd_df[dmd_df["year"].isin([2010, 2015])]
dmd_df = dmd_df[dmd_df["year"].isin(info.Y)]
results["demand"] = dmd_df
# create a list of our conditions
conditions = [
(h_act["commodity"] == "urban_mw"),
(h_act["commodity"] == "industry_mw"),
(h_act["commodity"] == "rural_mw"),
(h_act["commodity"] == "urban_disconnected"),
(h_act["commodity"] == "rural_disconnected"),
(h_act["commodity"] == "urban_collected_wst"),
(h_act["commodity"] == "rural_collected_wst"),
(h_act["commodity"] == "urban_uncollected_wst"),
(h_act["commodity"] == "industry_uncollected_wst"),
(h_act["commodity"] == "rural_uncollected_wst"),
]
# create a list of the values we want to assign for each condition
values = [
"urban_t_d",
"industry_unconnected",
"rural_t_d",
"urban_unconnected",
"rural_unconnected",
"urban_sewerage",
"rural_sewerage",
"urban_untreated",
"industry_untreated",
"rural_untreated",
]
# create a new column and use np.select to assign
# values to it using our lists as arguments
h_act["commodity"] = np.select(conditions, values, "Unknown commodity")
h_act["value"] = h_act["value"].abs()
hist_act = make_df(
"historical_activity",
node_loc=h_act["node"],
technology=h_act["commodity"],
year_act=h_act["year"],
mode="M1",
time=h_act["time"],
value=h_act["value"],
unit="km3/year",
)
results["historical_activity"] = hist_act
h_cap = h_act[h_act["year"] >= 2015]
h_cap = (
h_cap.groupby(["node", "commodity", "level", "year", "unit"])["value"]
.sum()
.reset_index()
)
hist_cap = make_df(
"historical_new_capacity",
node_loc=h_cap["node"],
technology=h_cap["commodity"],
year_vtg=h_cap["year"],
value=h_cap["value"] / 5,
unit="km3/year",
)
results["historical_new_capacity"] = hist_cap
# share constraint lower bound on urban_Water recycling
df_share_wat = make_df(
"share_commodity_lo",
shares="share_wat_recycle",
node_share="B" + df_recycling["node"],
year_act=df_recycling["year"],
value=df_recycling["value"],
unit="-",
).pipe(
broadcast,
time=pd.Series(sub_time),
)
df_share_wat = df_share_wat[df_share_wat["year_act"].isin(info.Y)]
results["share_commodity_lo"] = df_share_wat
# rel = make_df(
# "relation_activity",
# relation="recycle_rel",
# node_rel="B" + df_recycling["node"],
# year_rel=df_recycling["year"],
# node_loc="B" + df_recycling["node"],
# technology="urban_recycle",
# year_act=df_recycling["year"],
# mode="M1",
# value=-df_recycling["value"],
# unit="-",
# )
# rel = rel.append(
# make_df(
# "relation_activity",
# relation="recycle_rel",
# node_rel="B" + df_recycling["node"],
# year_rel=df_recycling["year"],
# node_loc="B" + df_recycling["node"],
# technology="urban_sewerage",
# year_act=df_recycling["year"],
# mode="M1",
# value=1,
# unit="-",
# )
# )
# results["relation_activity"] = rel
# rel_lo = make_df(
# "relation_lower",
# relation="recycle_rel",
# node_rel="B" + df_recycling["node"],
# value=0,
# unit="-",
# ).pipe(broadcast, year_rel=info.Y)
# results["relation_lower"] = rel_lo
# rel_up = make_df(
# "relation_upper",
# relation="recycle_rel",
# node_rel="B" + df_recycling["node"],
# value=0,
# unit="-",
# ).pipe(broadcast, year_rel=info.Y)
# results["relation_upper"] = rel_up
return results
[docs]def read_water_availability(context: "Context") -> Sequence[pd.DataFrame]:
"""
Reads water availability data and bias correct
it for the historical years and no climate
scenario assumptions.
Parameters
----------
context : .Context
Returns
-------
data : (pd.DataFrame, pd.DataFrame)
"""
# Reference to the water configuration
info = context["water build info"]
# reading sample for assiging basins
PATH = package_data_path(
"water", "delineation", f"basins_by_region_simpl_{context.regions}.csv"
)
df_x = pd.read_csv(PATH)
if "year" in context.time:
# path for reading basin delineation file
PATH = package_data_path(
"water", "delineation", f"basins_by_region_simpl_{context.regions}.csv"
)
df_x = pd.read_csv(PATH)
# Adding freshwater supply constraints
# Reading data, the data is spatially and temprally aggregated from GHMs
path1 = package_data_path(
"water",
"availability",
f"qtot_5y_{context.RCP}_{context.REL}_{context.regions}.csv",
)
# Read rcp 2.6 data
df_sw = pd.read_csv(path1)
df_sw.drop(["Unnamed: 0"], axis=1, inplace=True)
df_sw.index = df_x["BCU_name"].index
df_sw = df_sw.stack().reset_index()
df_sw.columns = pd.Index(["Region", "years", "value"])
df_sw.fillna(0, inplace=True)
df_sw.reset_index(drop=True, inplace=True)
df_sw["year"] = pd.DatetimeIndex(df_sw["years"]).year
df_sw["time"] = "year"
df_sw2210 = df_sw[df_sw["year"] == 2100].copy()
df_sw2210.loc["year"] = 2110
df_sw = pd.concat([df_sw, df_sw2210])
df_sw = df_sw[df_sw["year"].isin(info.Y)]
# Adding groundwater supply constraints
# Reading data, the data is spatially and temprally aggregated from GHMs
path1 = package_data_path(
"water",
"availability",
f"qr_5y_{context.RCP}_{context.REL}_{context.regions}.csv",
)
# Read groundwater data
df_gw = pd.read_csv(path1)
df_gw.drop(["Unnamed: 0"], axis=1, inplace=True)
df_gw.index = df_x["BCU_name"].index
df_gw = df_gw.stack().reset_index()
df_gw.columns = pd.Index(["Region", "years", "value"])
df_gw.fillna(0, inplace=True)
df_gw.reset_index(drop=True, inplace=True)
df_gw["year"] = pd.DatetimeIndex(df_gw["years"]).year
df_gw["time"] = "year"
df_gw2210 = df_gw[df_gw["year"] == 2100].copy()
df_gw2210.loc["year"] = 2110
df_gw = pd.concat([df_gw, df_gw2210])
df_gw = df_gw[df_gw["year"].isin(info.Y)]
else:
# Adding freshwater supply constraints
# Reading data, the data is spatially and temprally aggregated from GHMs
path1 = package_data_path(
"water",
"availability",
f"qtot_5y_m_{context.RCP}_{context.REL}_{context.regions}.csv",
)
df_sw = pd.read_csv(path1)
df_sw.drop(["Unnamed: 0"], axis=1, inplace=True)
df_sw.index = df_x["BCU_name"].index
df_sw = df_sw.stack().reset_index()
df_sw.columns = pd.Index(["Region", "years", "value"])
df_sw.sort_values(["Region", "years", "value"], inplace=True)
df_sw.fillna(0, inplace=True)
df_sw.reset_index(drop=True, inplace=True)
df_sw["year"] = pd.DatetimeIndex(df_sw["years"]).year
df_sw["time"] = pd.DatetimeIndex(df_sw["years"]).month
df_sw2210 = df_sw[df_sw["year"] == 2100].copy()
df_sw2210.loc["year"] = 2110
df_sw = pd.concat([df_sw, df_sw2210])
df_sw = df_sw[df_sw["year"].isin(info.Y)]
# Reading data, the data is spatially and temporally aggregated from GHMs
path1 = package_data_path(
"water",
"availability",
f"qr_5y_m_{context.RCP}_{context.REL}_{context.regions}.csv",
)
df_gw = pd.read_csv(path1)
df_gw.drop(["Unnamed: 0"], axis=1, inplace=True)
df_gw.index = df_x["BCU_name"].index
df_gw = df_gw.stack().reset_index()
df_gw.columns = pd.Index(["Region", "years", "value"])
df_gw.sort_values(["Region", "years", "value"], inplace=True)
df_gw.fillna(0, inplace=True)
df_gw.reset_index(drop=True, inplace=True)
df_gw["year"] = pd.DatetimeIndex(df_gw["years"]).year
df_gw["time"] = pd.DatetimeIndex(df_gw["years"]).month
df_gw2210 = df_gw[df_gw["year"] == 2100].copy()
df_gw2210.loc["year"] = 2110
df_gw = pd.concat([df_gw, df_gw2210])
df_gw = df_gw[df_gw["year"].isin(info.Y)]
return df_sw, df_gw
[docs]def add_water_availability(context: "Context") -> dict[str, pd.DataFrame]:
"""
Adds water supply constraints
Parameters
----------
context : .Context
Returns
-------
data : dict of (str -> pandas.DataFrame)
Keys are MESSAGE parameter names such as 'input', 'fix_cost'. Values
are data frames ready for :meth:`~.Scenario.add_par`.
"""
# define an empty dictionary
results = {}
# Adding freshwater supply constraints
# Reading data, the data is spatially and temprally aggregated from GHMs
df_sw, df_gw = read_water_availability(context)
dmd_df = make_df(
"demand",
node="B" + df_sw["Region"].astype(str),
commodity="surfacewater_basin",
level="water_avail_basin",
year=df_sw["year"],
time=df_sw["time"],
value=-df_sw["value"],
unit="km3/year",
)
dmd_df = pd.concat(
[
dmd_df,
make_df(
"demand",
node="B" + df_gw["Region"].astype(str),
commodity="groundwater_basin",
level="water_avail_basin",
year=df_gw["year"],
time=df_gw["time"],
value=-df_gw["value"],
unit="km3/year",
),
]
)
dmd_df["value"] = dmd_df["value"].apply(lambda x: x if x <= 0 else 0)
results["demand"] = dmd_df
# share constraint lower bound on groundwater
df_share = make_df(
"share_commodity_lo",
shares="share_low_lim_GWat",
node_share="B" + df_gw["Region"].astype(str),
year_act=df_gw["year"],
time=df_gw["time"],
value=df_gw["value"]
/ (df_sw["value"] + df_gw["value"])
* 0.95, # 0.95 buffer factor to avoid numerical error
unit="-",
)
df_share["value"] = df_share["value"].fillna(0)
results["share_commodity_lo"] = df_share
return results
[docs]def add_irrigation_demand(context: "Context") -> dict[str, pd.DataFrame]:
"""
Adds endogenous irrigation water demands from GLOBIOM emulator
Parameters
----------
context : .Context
Returns
-------
data : dict of (str -> pandas.DataFrame)
Keys are MESSAGE parameter names such as 'input', 'fix_cost'. Values
are data frames ready for :meth:`~.Scenario.add_par`.
"""
# define an empty dictionary
results = {}
scen = context.get_scenario()
# add water for irrigation from globiom
land_out_1 = scen.par(
"land_output", {"commodity": "Water|Withdrawal|Irrigation|Cereals"}
)
land_out_1["level"] = "irr_cereal"
land_out_2 = scen.par(
"land_output", {"commodity": "Water|Withdrawal|Irrigation|Oilcrops"}
)
land_out_2["level"] = "irr_oilcrops"
land_out_3 = scen.par(
"land_output", {"commodity": "Water|Withdrawal|Irrigation|Sugarcrops"}
)
land_out_3["level"] = "irr_sugarcrops"
land_out = pd.concat([land_out_1, land_out_2, land_out_3])
land_out["commodity"] = "freshwater"
land_out["value"] = 1e-3 * land_out["value"]
# take land_out edited and add as a demand in land_input
results["land_input"] = land_out
return results