References

[1]

Environmental Protection Agency (EPA). Global Mitigation of Non-CO2 Greenhouse Gases: 2010-2030. 2013. URL: https://www3.epa.gov/climatechange/Downloads/EPAactivities/MAC_Report_2013.pdf.

[2]

International Energy Agency. Energy Balances. Technical Report, International Energy Agency, 2012.

[3]

International Energy Agency. World Energy Outlook 2014. Technical Report, International Energy Agency, 2014. URL: http://www.worldenergyoutlook.org/weo2014/.

[4]

Nikos Alexandratos and Jelle Bruinsma. World agriculture towards 2030/2050: the 2012 revision. Report 12-03, FAO, June 2012.

[5]

Markus Amann, Imrich Bertok, Jens Borken-Kleefeld, Janusz Cofala, Chris Heyes, Lena Hoglund-Isaksson, Zbigniew Klimont, Binh Nguyen, Maximilian Posch, Peter Rafaj, Robert Sandler, Wolfgang Schopp, Fabian Wagner, and Wilfried Winiwarter. Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling & Software, 26(12):1489–1501, 12 2011. doi:10.1016/j.envsoft.2011.07.012.

[6]

Markus Amann, Rafal Cabala, Janusz Cofala, Chris Heyes, Zbigniew Klimont, Wolfgang Schopp, Leonor Tarrason, David Simpson, Peter Wind, and Jan-Eiof Jonson. "Current Legislation" and the "Maximum Technically Feasible Reduction" cases for the CAFE baseline emission projections. IIASA, Vienna, 2004. URL: https://www.researchgate.net/profile/Zbigniew_Klimont/publication/230709494_The_Current_Legislation_and_the_Maximum_Technically_Feasible_Reduction_cases_for_the_CAFE_baseline_emission_projections._CAFE_Report__2/links/0deec53cd2d778aafb000000.pdf (visited on 2016-03-24).

[7]

Markus Amann, Zbigniew Klimont, and Fabian Wagner. Regional and global emissions of air pollutants: Recent trends and future scenarios. Annual Review of Environment and Resources, 38:31–55, 2013.

[8]

Goran Berndes, Monique Hoogwijk, and Richard van den Broek. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy, 25(1):1–28, 7 2003. doi:10.1016/S0961-9534(02)00185-X.

[9]

A.F. Bouwman, K.W. Van der Hoek, B. Eickhout, and I. Soenario. Exploring changes in world ruminant production systems. Agricultural Systems, 84(2):121 – 153, 2005. doi:10.1016/j.agsy.2004.05.006.

[10]

Stefan Bringezu, Helmut Schutz, Meghan O’Brien, Lea Kauppi, Robert W Howarth, and Jeff McNeely. Assessing biofuels: towards sustainable production and use of resources. United Nations Environment Programme, 2009. ISBN 92-807-3052-5.

[11]

A. E. Carpentieri, E. D. Larson, and J. Woods. Future biomass-based electricity supply in northeast brazil. Biomass and Bioenergy, 4(3):149–173, 1993. URL: http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0027382662&partnerID=40&rel=R8.2.0.

[12]

Lena Christiansson. Diffusion and learning curves of renewable-energy technologies. IIASA Report, 1995.

[13]

Janusz Cofala, Markus Amann, Zbigniew Klimont, Kaarle Kupiainen, and Lena Hoglund-Isaksson. Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmospheric Environment, 41(38):8486–8499, 2007.

[14]

Richard T. Conant and Keith Paustian. Grassland management activity data: current sources and future needs. Environmental Management, 33(4):467–473, 2004. doi:10.1007/s00267-003-9104-7.

[15]

Rob Dellink, Jean Chateau, Elisa Lanzi, and Bertrand Magne. Long-term economic growth projections in the Shared Socioeconomic Pathways. Global Environmental Change, 2015. URL: http://pure.iiasa.ac.at/13280/.

[16]

UN Population Division. World Population Projection. Technical Report, UN, 2010.

[17]

Veronika Dornburg, APC Faaij, PA Verweij, Martin Banse, Kees van Diepen, Herman van Keulen, Hans Langeveld, Marieke Meeusen, Gerrie van de Ven, and Flip Wester. Biomass assessment: assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy: inventory and analysis of existing studies: supporting document. Report/WAB, 2008.

[18]

Bas Eickhout, Gert Jan van den Born, Jos Notenboom, M van Oorschot, JPM Ros, DP Van Vuuren, and HJ Westhoek. Local and global consequences of the EU renewable directive for biofuels: Testing the sustainability criteria. Local and global consequences of the EU renewable directive for biofuels: testing the sustainability criteria, 2008.

[19]

Tommi Ekholm, Volker Krey, Shonali Pachauri, and Keywan Riahi. Determinants of household energy consumption in India. Energy Policy, 38(10):5696–5707, 2010.

[20]

EPA. Us environmental protection agency global emissions database. Report, US Environmental Protection Agency, 2012. URL: http://www.epa.gov/climatechange/ghgemissions/global.html.

[21]

K. Eurek, P. Sullivan, M. Gleason, D. Hettinger, D.M. Heimiller, and A. Lopez. An improved global wind resource estimate for integrated assessment models. Energy Economics, 64:552–567, 2017.

[22]

FAO. Global forest resources assessment 2005. progress towards sustainable forest management. Report, Food and Agriculture Organization of the United Nations, 2006.

[23]

FAO. Global forest resources assessment. Report, Food and Agriculture Organization of the United Nations, 2010. URL: http://www.fao.org/forestry/fra/fra2010/en/.

[24]

RA Fischer, Derek Byerlee, and Gregory O Edmeades. Can technology deliver on the yield challenge to 2050? 2009. URL: http://www.fao.org/3/a-ak542e/ak542e12a.pdf.

[25]

Chris E Forest, Peter H Stone, Andrei P Sokolov, Myles R Allen, and Mort D Webster. Quantifying uncertainties in climate system properties with the use of recent climate observations. Science, 295(5552):113–117, 2002.

[26]

FPP. Holzernte in der durchforstung; leistungszahlen kosten - oebf seiltabelle sortimentverfahren (skm-tab). Report, Kooperationsabkommen Forst-Platte-Papier, 1999.

[27]

Oliver Fricko, Petr Havlik, Joeri Rogelj, Zbigniew Klimont, Mykola Gusti, Nils Johnson, Peter Kolp, Manfred Strubegger, Hugo Valin, Markus Amann, Tatiana Ermolieva, Nicklas Forsell, Mario Herrero, Chris Heyes, Georg Kindermann, Volker Krey, David L. McCollum, Michael Obersteiner, Shonali Pachauri, Shilpa Rao, Erwin Schmid, Wolfgang Schoepp, and Keywan Riahi. The marker quantification of the shared socioeconomic pathway 2: a middle-of-the-road scenario for the 21st century. Global Environmental Change, 42:251–267, 2017.

[28]

Oliver Fricko, Simon C Parkinson, Nils Johnson, Manfred Strubegger, Michelle TH van Vliet, and Keywan Riahi. Energy sector water use implications of a 2 °C climate policy. Environmental Research Letters, 11(3):034011, 2016.

[29]

Steffen Fritz, Linda See, Ian McCallum, Christian Schill, Michael Obersteiner, Marijn van der Velde, Hannes Boettcher, Petr Havlik, and Frederic Achard. Highlighting continued uncertainty in global land cover maps for the user community. Environmental Research Letters, 6(4):044005, 2011. URL: http://stacks.iop.org/1748-9326/6/i=4/a=044005.

[30]

Claire Granier, Bertrand Bessagnet, Tami Bond, Ariela D’Angiola, Hugo Denier van Der Gon, Gregory J Frost, Angelika Heil, Johannes W Kaiser, Stefan Kinne, and Zbigniew Klimont. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 109(1-2):163–190, 2011.

[31]

Biomass Technology Group. Handbook Biomass Gasification. H.A.M. Knoef. ISBN: 90-810068-1-9, 2005.

[32]

A. Grubler, C. Wilson, N. Bento, B. Boza-Kiss, V. Krey, D.L. McCollum, N.D. Rao, K. Riahi, J. Rogelj, S. De Stercke, J. Cullen, S. Frank, O. Fricko, F. Guo, M. Gidden, P. Havlík, D. Huppmann, G. Kiesewetter, P. Rafaj, W. Schoepp, and H. Valin. A low energy demand scenario for meeting the 1.5 °c target and sustainable development goals without negative emission technologies. Nature Energy, 3(6):515–527, 2018. doi:10.1038/s41560-018-0172-6.

[33]

MI Gusti. An algorithm for simulation of forest management decisions in the global forest model. Штучний інтелект, 2010.

[34]

C.N. Hamelinck and A.P.C. Faaij. Future prospects for production of methanol and hydrogen from biomass. Report, Utrecht University, Copernicus Institute, Science Technology and Society, 2001.

[35]

B. R. Hartsough, X. Zhang, and R. D. Fight. Harvesting cost model for small trees in natural stands in the interior northwest. Forest Products Journal, 51(4):54–61, 2001. URL: http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0035306334&partnerID=40&rel=R8.2.0.

[36]

Petr Havlik, Uwe A Schneider, Erwin Schmid, Hannes Bottcher, Steffen Fritz, Rastislav Skalsky, Kentaro Aoki, Stephane De Cara, Georg Kindermann, and Florian Kraxner. Global land-use implications of first and second generation biofuel targets. Energy Policy, 39(10):5690–5702, 2011.

[37]

Petr Havlik, Hugo Valin, Mario Herrero, Michael Obersteiner, Erwin Schmid, Mariana C Rufino, Aline Mosnier, Philip K Thornton, Hannes Bottcher, and Richard T Conant. Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences, 111(10):3709–3714, 2014.

[38]

M. Herrero, P. Havlik, H. Valin, M.C. Rufino, A.M.O. Notenbaert, P.K. Thornton, M. Blummel, F. Weiss, and M. Obertsteiner. Global livestock systems: biomass use, production, feed efficiencies and greenhouse gas emissions. Proceedings of the National Academy of Sciences, 110(52):20888–20893, 2013.

[39]

M. Herrero, P.K. Thornton, R. Kruska, and R.S. Reid. Systems dynamics and the spatial distribution of methane emissions from african domestic ruminants to 2030. Agriculture, Ecosystems & Environment, 126(1-2):122 – 137, 2008. URL: http://www.sciencedirect.com/science/article/pii/S0167880908000121.

[40]

GmbH Herzogbaum. Forstpflanzen-preisliste 2008. herzog.baum samen & pflanzen gmbh. koaserbauerstr. 10, a - 4810 gmunden. austria (also available at www.energiehoelzer.at). 2008.

[41]

A. Heston, R. Summers, and B. Aten. Penn world table version 6.2. Report, Center for International Comparisons of Production, Income and Prices at the University of Pennsylvania. September 2006. http://pwt.econ.upenn.edu/php_site/pwt62/pwt62_form.php, 2006.

[42]

Monique Hoogwijk and Wina Graus. Global potential of renewable energy sources: a literature assessment. Background report prepared by order of REN21. Ecofys, PECSNL072975, 2008.

[43]

Monique Maria Hoogwijk. On the global and regional potential of renewable energy sources. PhD, Department of Science, Technology and Society. Utrecht University, 2004.

[44]

Daniel Huppmann, Matthew Gidden, Oliver Fricko, Peter Kolp, Clara Orthofer, Michael Pimmer, Nikolay Kushin, Adriano Vinca, Alessio Mastrucci, Keywan Riahi, and Volker Krey. The messageix integrated assessment model and the ix modeling platform (ixmp): an open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development. Environmental Modelling & Software, 112:143–156, 2019. doi:10.1016/j.envsoft.2018.11.012.

[45]

IEA. World energy model - investment costs. Report, International Energy Agency (IEA), 2014. URL: http://www.worldenergyoutlook.org/media/weowebsite/2014/weio/WEIO2014PGAssumptions.xlsx.

[46]

ILO. Occupational wages and hours of work and retail food prices, statistics from the ilo october inquiry. Report, International Labor Organisation, 2007.

[47]

IPCC. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: The Workbook (Volume 2). IPCC, Geneva, Switzerland, 1996. URL: http://www.ipcc-nggip.iges.or.jp/public/gl/invs5a.html.

[48]

IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 2007. URL: http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_full_report.pdf.

[49]

R. C. Izaurralde, J. R. Williams, W. B. McGill, N. J. Rosenberg, and M. C. Q. Jakas. Simulating soil c dynamics with epic: model description and testing against long-term data. Ecological Modelling, 192(3-4):362–384, 2006. URL: http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-31944437556&partnerID=40&rel=R8.2.0.

[50]

Jessica Jewell, David McCollum, Johannes Emmerling, Christoph Bertram, David E. H. J. Gernaat, Volker Krey, Leonidas Paroussos, Loic Berger, Kostas Fragkiadakis, Ilkka Keppo, Nawfal Saadi, Massimo Tavoni, Detlef van Vuuren, Vadim Vinichenko, and Keywan Riahi. Limited emission reductions from fuel subsidy removal except in energy exporting regions. Nature, 554(10):229, 2018.

[51]

R. Jiroušek, R. Klvač, and A. Skoupý. Productivity and costs of the mechanised cut-to-length wood harvesting system in clear-felling operations. Journal of Forest Science, 53(10):476–482, 2007. URL: http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-35448931938&partnerID=40&rel=R8.2.0.

[52]

Nils Johnson, Manfred Strubegger, Madleine McPherson, Simon Parkinson, Volker Krey, and Patrick Sullivan. A reduced-form approach for representing the impacts of wind and solar pv deployment on the structure and operation of the electricity system. Energy Economics, 2016.

[53]

Global Emissions Joint Research Centre. Emission Database for Global Atmospheric Research EDGAR v4.2. 11 2011. URL: http://edgar.jrc.ec.europa.eu/overview.php?v=42.

[54]

Mike Jurvelius. Labor-intensive harvesting of tree plantations in the southern philippines. forest harvesting case -study 9. rap publication: 1997/41. Report, Food and Agriculture Organization of the United Nations, 1997.

[55]

Samir KC and Wolfgang Lutz. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change, 2014.

[56]

Ilkka Keppo, Brian C O'Neill, and Keywan Riahi. Probabilistic temperature change projections and energy system implications of greenhouse gas emission scenarios. Technological Forecasting and Social Change, 74(7):936–961, 2007.

[57]

Ilkka Keppo and Manfred Strubegger. Short term decisions for long term problems–The effect of foresight on model based energy systems analysis. Energy, 35(5):2033–2042, 2010.

[58]

M.A. Keyzer, M.D. Merbis, I.F.P.W. Pavel, and C.F.A. van Wesenbeeck. Diet shifts towards meat and the effects on cereal use: can we feed the animals in 2030? Ecological Economics, 55(2):187–202, 2005. URL: http://www.sciencedirect.com/science/article/pii/S0921800904004100.

[59]

G. Kindermann, M. Obersteiner, B. Sohngen, J. Sathaye, K. Andrasko, E. Rametsteiner, B. Schlamadinger, S. Wunder, and R. Beach. Global cost estimates of reducing carbon emissions through avoided deforestation. Proceedings of the National Academy of Sciences, 105(30):10302, 2008.

[60]

G. E. Kindermann, I. McCallum, S. Fritz, and M. Obersteiner. A global forest growing stock, biomass and carbon map based on fao statistics. Silva Fennica, 42(3):387–396, 2008. URL: http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-46249088682&partnerID=40&rel=R8.2.0.

[61]

Georg E Kindermann, Michael Obersteiner, Ewald Rametsteiner, and Ian McCallum. Predicting the deforestation-trend under different carbon-prices. Carbon Balance and management, 1(1):15, 2006.

[62]

Volker Krey and Keywan Riahi. Implications of delayed participation and technology failure for the feasibility, costs, and likelihood of staying below temperature targets—Greenhouse gas mitigation scenarios for the 21st century. Energy Economics, 31:S94–S106, 2009.

[63]

Eric D. Larson, Zheng Li, and Robert H. Williams. Chapter 12 - Fossil Energy. In Global Energy Assessment - Toward a Sustainable Future, pages 901–992. Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, 2012. URL: www.globalenergyassessment.org.

[64]

S. Leduc, D. Schwab, E. Dotzauer, E. Schmid, and M. Obersteiner. Optimal location of wood gasification plants for methanol production with heat recovery. International Journal of Energy Research, 32:1080–1091 [2008], 2008.

[65]

Benjamin D. Leibowicz. Growth and competition in renewable energy industries: insights from an integrated assessment model with strategic firms. Energy Economics, 52, Part A:13 – 25, 2015. doi:10.1016/j.eneco.2015.09.010.

[66]

Aviva Loew, Paulina Jaramillo, and Haibo Zhai. Marginal costs of water savings from cooling system retrofits: A case study for Texas power plants. Environmental Research Letters, 11(10):104004, 2016.

[67]

Richard Loulou, Gary Goldstein, and Ken Noble. Documentation for the MARKAL Family of Models - Part II: MARKAL-MACRO. IEA Energy Technology Systems Analysis Programme (ETSAP), October 2004. URL: https://www.iea-etsap.org/MrklDoc-II_MARKALMACRO.pdf.

[68]

Alan Sussmann Manne and Richard G Richels. Buying greenhouse insurance: the economic costs of carbon dioxide emission limits. MIT press, 1992. ISBN 0-262-13280-X.

[69]

Bruce A. McCarl and Thomas H. Spreen. Price endogenous mathematical programming as a tool for sector analysis. American Journal of Agricultural Economics, 62(1):87–102, 1980. URL: http://www.jstor.org/stable/1239475.

[70]

D.L. McCollum, W. Zhou, C. Bertram, H.-S. De Boer, V. Bosetti, S. Busch, J. Després, L. Drouet, J. Emmerling, M. Fay, O. Fricko, S. Fujimori, M. Gidden, M. Harmsen, D. Huppmann, G. Iyer, V. Krey, E. Kriegler, C. Nicolas, S. Pachauri, S. Parkinson, M. Poblete-Cazenave, P. Rafaj, N. Rao, J. Rozenberg, A. Schmitz, W. Schoepp, D. Van Vuuren, and K. Riahi. Energy investment needs for fulfilling the paris agreement and achieving the sustainable development goals. Nature Energy, 3(7):589–599, 2018. doi:10.1038/s41560-018-0179-z.

[71]

David L. McCollum, Charlie Wilson, Michela Bevione, Samuel Carrara, Oreane Y. Edelenbosch, Johannes Emmerling, Céline Guivarch, Panagiotis Karkatsoulis, Ilkka Keppo, Volker Krey, Zhenhong Lin, Eoin Ó Broin, Leonidas Paroussos, Hazel Pettifor, Kalai Ramea, Keywan Riahi, Fuminori Sano, Baltazar Solano Rodriguez, and Detlef P. van Vuuren. Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles. Nature Energy, 3(8):664–673, 2018. doi:10.1038/s41560-018-0195-z.

[72]

David L. McCollum, Charlie Wilson, Hazel Pettifor, Kalai Ramea, Volker Krey, Keywan Riahi, Christoph Bertram, Zhenhong Lin, Oreane Y. Edelenbosch, and Sei Fujisawa. Improving the behavioral realism of global integrated assessment models: An application to consumers' vehicle choices. Transportation Research Part D: Transport and Environment, 55:322–342, 2017. doi:10.1016/j.trd.2016.04.003.

[73]

Haewon McJeon, Jae Edmonds, Nico Bauer, Leon Clarke, Brian Fisher, Brian P. Flannery, Jerome Hilaire, Volker Krey, Giacomo Marangoni, Raymond Mi, Keywan Riahi, Holger Rogner, and Massimo Tavoni. Limited impact on decadal-scale climate change from increased use of natural gas. Nature, 514(7523):482–485, 2014.

[74]

Malte Meinshausen. What does a 2 C target mean for greenhouse gas concentrations? A brief analysis based on multi-gas emission pathways and several climate sensitivity uncertainty estimates. Avoiding dangerous climate change, 2006.

[75]

Malte Meinshausen, Nicolai Meinshausen, William Hare, Sarah CB Raper, Katja Frieler, Reto Knutti, David J Frame, and Myles R Allen. Greenhouse-gas emission targets for limiting global warming to 2 C. Nature, 458(7242):1158–1162, 2009.

[76]

Malte Meinshausen, SCB Raper, and TML Wigley. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6–Part 1: Model description and calibration. Atmospheric Chemistry and Physics, 11(4):1417–1456, 2011.

[77]

Malte Meinshausen, Steven J Smith, K Calvin, John S Daniel, MLT Kainuma, JF Lamarque, K Matsumoto, SA Montzka, SCB Raper, and K Riahi. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic change, 109(1-2):213–241, 2011.

[78]

James Meldrum, Syndi Nettles-Anderson, Garvin Heath, and Jordan Macknick. Life cycle water use for electricity generation: A review and harmonization of literature estimates. Environmental Research Letters, 8(1):015031, 2013.

[79]

Sabine Messner. Endogenized technological learning in an energy systems model. Journal of Evolutionary Economics, 7(3):291–313, 1997.

[80]

Sabine Messner and Leo Schrattenholzer. MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy, 25(3):267–282, 2000.

[81]

Sabine Messner and Manfred Strubegger. User's Guide for MESSAGE III. 1995. URL: http://pure.iiasa.ac.at/id/eprint/4527/1/WP-95-069.pdf.

[82]

Timothy D. Mitchell and Philip D. Jones. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25(6):693–712, 2005. doi:10.1002/joc.1181.

[83]

A. Muhammad, J. Seale, B. Meade, and A. Regmi. International evidence on food consumption patterns: an update using 2005 international comparison program data. Report 1929, USDA-ERS, 2011.

[84]

Sanderine Nonhebel. Energy from agricultural residues and consequences for land requirements for food production. Agricultural Systems, 94(2):586–592, 2007.

[85]

B.C. O’Neill, T.R. Carter, K.L. Ebi, J. Edmonds, S. Hallegatte, E. Kemp-Benedict, E. Kriegler, L. Mearns, R. Moss, K. Riahi, B. van Ruijven, and D. van Vuuren. Meeting report of the workshop on the nature and use of new socioeconomic pathways for climate change research. Report, NCAR, November 2-4, 2011 2012. URL: http://www.isp.ucar.edu/socio-economic-pathways.

[86]

Brian C O’Neill, Elmar Kriegler, Kristie L Ebi, Eric Kemp-Benedict, Keywan Riahi, Dale S Rothman, Bas J van Ruijven, Detlef P van Vuuren, Joern Birkmann, and Kasper Kok. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 2015.

[87]

Brian C O’Neill, Elmar Kriegler, Keywan Riahi, Kristie L Ebi, Stephane Hallegatte, Timothy R Carter, Ritu Mathur, and Detlef P van Vuuren. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change, 122(3):387–400, 2014.

[88]

Brian C O’Neill, Keywan Riahi, and Ilkka Keppo. Mitigation implications of midcentury targets that preserve long-term climate policy options. Proceedings of the National Academy of Sciences, 107(3):1011–1016, 2010.

[89]

S. Pachauri, B. J. Van Ruijven, Y. Nagai, K. Riahi, D. P. Van Vuuren, A. Brew-Hammond, and N. Nakicenovic. Pathways to achieve universal household access to modern energy by 2030. Environmental Research Letters, 2013. Cited By :77. URL: www.scopus.com.

[90]

Shonali Pachauri, Bas J van Ruijven, Yu Nagai, Keywan Riahi, Detlef P van Vuuren, Abeeku Brew-Hammond, and Nebojsa Nakicenovic. Pathways to achieve universal household access to modern energy by 2030. Environmental Research Letters, 8(2):024015, 2013.

[91]

Simon Parkinson, Volker Krey, Daniel Huppmann, Taher Kahil, David McCollum, Oliver Fricko, Edward Byers, Matthew J Gidden, Beatriz Mayor, Zarrar Khan, and others. Balancing clean water-climate change mitigation trade-offs. Environmental Research Letters, 14(1):014009, 2019.

[92]

Simon Parkinson, Volker Krey, Daniel Huppmann, Taher Kahil, David McCollum, Oliver Fricko, Edward Byers, Matthew J Gidden, Beatriz Mayor, Zarrar Khan, and others. Balancing clean water-climate change mitigation trade-offs. Environmental Research Letters, 14(1):014009, 2019. doi:10.1088/1748-9326/aaf2a3.

[93]

W. J. Parton, J. M. O. Scurlock, D. S. Ojima, T. G. Gilmanov, R. J. Scholes, D. S. Schimel, T. Kirchner, J. C. Menaut, T. Seastedt, E. G. Moya, A. Kamnalrut, and J. I. Kinyamario. Observations and modeling of biomass and soil organic-matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7:785–809, 1993.

[94]

WJ Parton, DS Schimel, DS Ojima, and CV Cole. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Science Society of America Journal, 51(5):1173–1179, 1987.

[95]

R. C. Pietzcker, D. Stetter, S. Manger, and G. Luderer. Using the sun to decarbonize the power sector: the economic potential of photovoltaics and concentrating solar power. Applied Energy, 135:704–720, 2014.

[96]

Andrew J Plantinga, Thomas Mauldin, and Douglas J Miller. An econometric analysis of the costs of sequestering carbon in forests. American Journal of Agricultural Economics, 81(4):812–824, 1999.

[97]

Miguel Poblete-Cazenave and Shonali Pachauri. A structural model of cooking fuel choices in developing countries. Energy Economics, 75:449–463, 2018. URL: https://www.sciencedirect.com/science/article/pii/S0140988318303712, doi:https://doi.org/10.1016/j.eneco.2018.09.003.

[98]

Miguel Poblete-Cazenave and Shonali Pachauri. A model of energy poverty and access: estimating household electricity demand and appliance ownership. Energy Economics, 98:105266, 2021. URL: https://www.sciencedirect.com/science/article/pii/S0140988321001717, doi:https://doi.org/10.1016/j.eneco.2021.105266.

[99]

Alexander Popp, Katherine Calvin, Shinichiro Fujimori, Petr Havlik, Florian Humpenöder, Elke Stehfest, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Jonathan C. Doelmann, Mykola Gusti, Tomoko Hasegawa, Page Kyle, Michael Obersteiner, Andrzej Tabeau, Kiyoshi Takahashi, Hugo Valin, Stephanie Waldhoff, Isabelle Weindl, Marshall Wise, Elmar Kriegler, Hermann Lotze-Campen, Oliver Fricko, Keywan Riahi, and Detlef P. van Vuuren. Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42:331–345, 2017. URL: https://www.sciencedirect.com/science/article/pii/S0959378016303399, doi:https://doi.org/10.1016/j.gloenvcha.2016.10.002.

[100]

N. Ramankutty, A.T. Evan, C. Monfreda, and J.A. Foley. Farming the planet: 1. geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 22(1):1–19, 2008.

[101]

E Rametsteiner, S Nilsson, H Bottcher, P Havlik, F Kraxner, S Leduc, M Obersteiner, F Rydzak, U Schneider, D Schwab, and L Willmore. Study of the effects of globalization on the economic viability of eu forestry. final report of the agri tender project: agri-g4-2006-06 [2007]. ec contract number 30-ce-0097579/00-89. Report, EC/IIASA, 2007. URL: http://ec.europa.eu/agriculture/analysis/external/viability_forestry/index_en.htm.

[102]

S. Rao, Z. Klimont, S.J. Smith, R. Van Dingenen, F. Dentener, L. Bouwman, K. Riahi, M. Amann, B.L. Bodirsky, D.P. van Vuuren, L. Aleluia Reis, K. Calvin, L. Drouet, O. Fricko, S. Fujimori, D. Gernaat, P. Havlik, M. Harmsen, T. Hasegawa, C. Heyes, J. Hilaire, G. Luderer, T. Masui, E. Stehfest, J. Strefler, S. van der Sluis, and M. Tavoni. Future air pollution in the shared socio-economic pathways. Global Environmental Change, 42:346–358, 2017. doi:10.1016/j.gloenvcha.2016.05.012.

[103]

Shilpa Rao, Vadim Chirkov, Frank Dentener, Rita Van Dingenen, Shonali Pachauri, Pallav Purohit, Markus Amann, Chris Heyes, Patrick Kinney, and Peter Kolp. Environmental modeling and methods for estimation of the global health impacts of air pollution. Environmental Modeling & Assessment, 17(6):613–622, 2012.

[104]

Shilpa Rao, Shonali Pachauri, Frank Dentener, Patrick Kinney, Zbigniew Klimont, Keywan Riahi, and Wolfgang Schoepp. Better air for better health: Forging synergies in policies for energy access, climate change and air pollution. Global environmental change, 23(5):1122–1130, 2013.

[105]

Shilpa Rao and Keywan Riahi. The Role of Non-CO₃ Greenhouse Gases in Climate Change Mitigation: Long-term Scenarios for the 21st Century. The Energy Journal, pages 177–200, 2006.

[106]

Catherine E. Raptis and Stephan Pfister. Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems. Energy, 97:46–57, 2016.

[107]

CA Reynolds, TJ Jackson, and WJ Rawls. Estimating soil water-holding capacities by linking the food and agriculture organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resources Research, 36(12):3653–3662, 2000.

[108]

Keywan Riahi, Frank Dentener, Dolf Gielen, Arnulf Grubler, Jessica Jewell, Zbigniew Klimont, Volker Krey, David McCollum, Shonali Pachauri, Shilpa Rao, Bas van Ruijven, Detlef P. van Vuuren, and Charlie Wilson. Chapter 17 - Energy Pathways for Sustainable Development. In Global Energy Assessment - Toward a Sustainable Future, pages 1203–1306. Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, 2012. URL: http://www.globalenergyassessment.org.

[109]

Keywan Riahi, Arnulf Grubler, and Nebojsa Nakicenovic. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74(7):887–935, 2007.

[110]

Keywan Riahi, Shilpa Rao, Volker Krey, Cheolhung Cho, Vadim Chirkov, Guenther Fischer, Georg Kindermann, Nebojsa Nakicenovic, and Peter Rafaj. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1-2):33–57, 2011.

[111]

Keywan Riahi and R Alexander Roehrl. Greenhouse gas emissions in a dynamics-as-usual scenario of economic and energy development. Technological Forecasting and Social Change, 63(2):175–205, 2000.

[112]

Keywan Riahi, Edward S Rubin, and Leo Schrattenholzer. Prospects for carbon capture and sequestration technologies assuming their technological learning. Energy, 29(9):1309–1318, 2004.

[113]

Keywan Riahi, Detlef P. van Vuuren, Elmar Kriegler, Jae Edmonds, Brian O’Neill, Shinichiro Fujimori, Nico Bauer, Katherine Calvin, Rob Dellink, Oliver Fricko, Wolfgang Lutz, Alexander Popp, Jesus Crespo Cuaresma, Samir KC, Marian Leimbach, Leiwen Jiang, Tom Kram, Shilpa Rao, Johannes Emmerling, Kristie Ebi, Tomoko Hasegawa, Petr Havlik, Florian Humpenoder, Lara Aleluia Da Silva, Steve Smith, Elke Stehfest, Valentina Bosetti, Jiyong Eom, David Gernaat, Toshihiko Masui, Joeri Rogelj, Jessica Strefler, Laurent Drouet, Volker Krey, Gunnar Luderer, Mathijs Harmsen, Kiyoshi Takahashi, Lavinia Baumstark, Jonathan Doelman, Mikiko Kainuma, Zbigniew Klimont, Giacomo Marangoni, Hermann Lotze-Campen, Michael Obersteiner, Andrzej Tabeau, and Massimo Tavoni. The Shared Socioeconomic Pathways and their Energy, Land Use, and Greenhouse Gas Emissions Implications. Global Environmental Change, 42:153–168, 2017. URL: http://pure.iiasa.ac.at/13280/, doi:10.1016/j.gloenvcha.2016.05.009.

[114]

M. Roelfsema, H. L. van Soest, M. Harmsen, D. P. van Vuuren, C. Bertram, M. den Elzen, N. Höhne, G. Iacobuta, V. Krey, E. Kriegler, G. Luderer, K. Riahi, F. Ueckerdt, J. Després, L. Drouet, J. Emmerling, S. Frank, O. Fricko, M. Gidden, F. Humpenöder, D. Huppmann, S. Fujimori, K. Fragkiadakis, K. Gi, K. Keramidas, A. C. Köberle, L. Aleluia Reis, P. Rochedo, R. Schaeffer, K. Oshiro, Z. Vrontisi, W. Chen, G. C. Iyer, J. Edmonds, M. Kannavou, K. Jiang, R. Mathur, G. Safonov, and S. S. Vishwanathan. Taking stock of national climate policies to evaluate implementation of the paris agreement. Nature Communications, 2020. doi:https://doi.org/10.1038/s41467-020-15414-6.

[115]

Joeri Rogelj, Oliver Fricko, Malte Meinshausen, Volker Krey, Johanna Zilliacus, and Keywan Riahi. Understanding the origin of paris agreement emission uncertainties. Nature Communication, pages 15748, 2017.

[116]

Joeri Rogelj, David L McCollum, Brian C O’Neill, and Keywan Riahi. 2020 emissions levels required to limit warming to below 2 [thinsp][deg] C. Nature Climate Change, 3(4):405–412, 2013.

[117]

Joeri Rogelj, David L McCollum, Andy Reisinger, Malte Meinshausen, and Keywan Riahi. Probabilistic cost estimates for climate change mitigation. Nature, 493(7430):79–83, 2013.

[118]

Joeri Rogelj, Andy Reisinger, David L McCollum, Reto Knutti, Keywan Riahi, and Malte Meinshausen. Mitigation choices impact carbon budget size compatible with low temperature goals. Environmental Research Letters, 10(7):075003, 2015.

[119]

H Rogner, Roberto F Aguilera, Christina Archer, Ruggero Bertani, S Bhattacharya, M Dusseault, Luc Gagnon, H Harbel, Monique Hoogwijk, and Arthur Johnson. Chapter 7 - Energy resources and potentials. In Global Energy Assessment - Toward a Sustainable Future, pages 423–512. Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, 2012.

[120]

Hans-Holger Rogner. An assessment of world hydrocarbon resources. Annual review of energy and the environment, 22(1):217–262, 1997.

[121]

Dmitry Rokityanskiy, Pablo C Benitez, Florian Kraxner, Ian McCallum, Michael Obersteiner, Ewald Rametsteiner, and Yoshiki Yamagata. Geographically explicit global modeling of land-use change, carbon sequestration, and biomass supply. Technological Forecasting and Social Change, 74(7):1057–1082, 2007.

[122]

Aaron Ruesch and Holly K. Gibbs. New ipcc tier-1 global biomass carbon map for the year 2000. Report, Oak Ridge National Laboratory, 2008. URL: http://cdiac.ornl.gov/epubs/ndp/global_carbon/carbon_documentation.html.

[123]

P. Russ, T. Wiesenthal, D. van Regemorter, and J.C. Ciscar. Global climate policy scenarios for 2030 and beyond: analysis of greenhouse gas emission reduction pathway scenarios with the poles and geme3 models. Institute for Prospective technological Studies, October, 2007.

[124]

Jayant Sathaye, Peter Chan, Larry Dale, Willy Makundi, and Ken Andrasko. A summary note estimating global forestry GHG mitigation potential and costs: A dynamic partial equilibrium approach. working draft, August, 10:448–457, 2003.

[125]

Jayant Sathaye, Willy Makundi, Larry Dale, Peter Chan, and Kenneth Andrasko. GHG mitigation potential, costs and benefits in global forests: a dynamic partial equilibrium approach. The Energy Journal, pages 127–162, 2006.

[126]

T. Sauer, P. Havlik, G. Kindermann, and U.A. . Schneider. Agriculture, population, land and water scarcity in a changing world - the role of irrigation. In Congress of the European Association of Agricultural Economists. 2008.

[127]

Andreas Schafer. Structural change in energy use. Energy Policy, 33(4):429–437, 2005.

[128]

A. L. Schloss, D. W. Kicklighter, J. Kaduk, U. Wittenberg, and The Participants of the Potsdam NPP Model Comparison. Comparing global models of terrestrial net primary productivity (npp): comparison of npp to climate and the normalized difference vegetation index (ndvi). Global Change Biology, 5(S1):25–34, 1999. doi:10.1046/j.1365-2486.1999.00004.x.

[129]

Erich A Schneider and William C Sailor. Long-term uranium supply estimates. Nuclear Technology, 162(3):379–387, 2008.

[130]

Uwe A. Schneider, Bruce A. McCarl, and Erwin Schmid. Agricultural sector analysis on greenhouse gas mitigation in us agriculture and forestry. Agricultural Systems, 94(2):128 – 140, 2007. URL: http://www.sciencedirect.com/science/article/pii/S0308521X06001028.

[131]

James Seale, Anita Regmi, and Jason Bernstein. International evidence on food consumption patterns. Report 1904, USDA-ERS, October 2003. URL: http://www.ers.usda.gov/Data/InternationalFoodDemand/.

[132]

Timothy Searchinger, Ralph Heimlich, Richard A Houghton, Fengxia Dong, Amani Elobeid, Jacinto Fabiosa, Simla Tokgoz, Dermot Hayes, and Tun-Hsiang Yu. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867):1238–1240, 2008.

[133]

C. Sere and H. Steinfeld. World livestock production systems: current status, issues and trends. Report 127, Food and Agriculture Organisation, 1996. URL: http://www.fao.org/WAIRDOCS/LEAD/X6101E/X6101E00.HTM.

[134]

R. Skalsky, Z. Tarasovicova, J. Balkovic, E. Schmid, M. Fuchs, E. Moltchanova, G. Kindermann, and P. Scholtz. Geo-bene global database for bio-physical modeling v.1.0. concepts, methodologies and data.technical report. Report, IIASA, accessed 13.03.09 2008. URL: http://www.geo-bene.eu/?q=node/1734S.

[135]

Edward MW Smeets, Andre PC Faaij, Iris M Lewandowski, and Wim C Turkenburg. A bottom-up assessment and review of global bio-energy potentials to 2050. Progress in Energy and combustion science, 33(1):56–106, 2007.

[136]

Pete Smith, Peter J Gregory, Detlef Van Vuuren, Michael Obersteiner, Petr Havlik, Mark Rounsevell, Jeremy Woods, Elke Stehfest, and Jessica Bellarby. Competition for land. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1554):2941–2957, 2010.

[137]

A. L. Sorensen. Economies of scale in biomass gasification systems. Report Interim Report IR-05-030, IIASA, 2005.

[138]

Robert N Stavins. The costs of carbon sequestration: a revealed-preference approach. The American Economic Review, 89(4):994–1009, 1999.

[139]

Elke Stehfest, Lex Bouwman, Detlef P Van Vuuren, Michel GJ Den Elzen, Bas Eickhout, and Pavel Kabat. Climate benefits of changing diet. Climatic change, 95(1-2):83–102, 2009.

[140]

B. J. Stokes, D. J. Frederick, and D. T. Curtin. Field trials of a short-rotation biomass feller buncher and selected harvesting systems. Biomass, 11(3):185–204, 1986. URL: http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0022984004&partnerID=40&rel=R8.2.0.

[141]

Patrick Sullivan, Volker Krey, and Keywan Riahi. Impacts of considering electric sector variability and reliability in the message model. Energy Strategy Reviews, 1(3):157–163, 2013.

[142]

T. Takayama and G.G. Judge. Spatial and temporal price and allocation models. North-Holland Amsterdam, 1971.

[143]

Francesco N Tubiello and Gunther Fischer. Reducing climate change impacts on agriculture: Global and regional effects of mitigation, 2000–2080. Technological Forecasting and Social Change, 74(7):1030–1056, 2007.

[144]

Francesco N Tubiello, Mirella Salvatore, Simone Rossi, Alessandro Ferrara, Nuala Fitton, and Pete Smith. The faostat database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1):015009, 2013. URL: http://stacks.iop.org/1748-9326/8/i=1/a=015009.

[145]

Jasper van Vliet, Maarten van den Berg, Michiel Schaeffer, Detlef P van Vuuren, Michel Den Elzen, Andries F Hof, Angelica Mendoza Beltran, and Malte Meinshausen. Copenhagen accord pledges imply higher costs for staying below 2 C warming. Climatic Change, 113(2):551–561, 2012.

[146]

Detlef van Vuuren, Washington Ochola, Susan Riha, Mario Giampietro, Hector Ginzo, Thomas Henrichs, Sajidin Hussain Hussain, Kaspar Kok, Moraka Makhura Makhura, and Monirul Mirza. Outlook on agricultural changes and its drivers. In Agriculture at a Crossroads-the Global Report of the International Assessment of Agricultural Knowledge, Science, and Technology. Island Press, 2009.

[147]

Detlef P Van Vuuren, Elie Bellevrat, Alban Kitous, and Morna Isaac. Bio-energy use and low stabilization scenarios. The Energy Journal, pages 193–221, 2010.

[148]

Detlef P Van Vuuren, Jasper van Vliet, and Elke Stehfest. Future bio-energy potential under various natural constraints. Energy Policy, 37(11):4220–4230, 2009.

[149]

J. Wang, C. Long, J. McNeel, and J. Baumgras. Productivity and cost of manual felling and cable skidding in central appalachian hardwood forests. Forest Products Journal, 54(12):45–51, 2004. URL: http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-11844274724&partnerID=40&rel=R8.2.0.

[150]

Tom ML Wigley. MAGICC/SCENGEN 5.3: User manual (version 2). NCAR, Boulder, CO, 2008.

[151]

J.R. Williams and VP Singh. The epic model. Computer models of watershed hydrology, pages 909–1000, 1995.

[152]

W. Wint and T. Robinson. Gridded livestock of the world 2007. FAO, 2007.

[153]

Liangzhi You and Stanley Wood. An entropy approach to spatial disaggregation of agricultural production. Agricultural Systems, 90(1-3):329 – 347, 2006. URL: http://www.sciencedirect.com/science/article/B6T3W-4JKYWM1-1/2/381253576eb09660fc9860c6c8bb8e1f.

[154]

Haibo Zhai and Edward S Rubin. Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage. Energy Policy, 38(10):5653–5660, 2010.

[155]

Chao Zhang, Laura Diaz Anadon, Hongpin Mo, Zhongnan Zhao, and Zhu Liu. Water- carbon trade-off in China`s coal power industry. Environmental science & technology, 48(19):11082–11089, 2014.

[156]

OECD and NEA. Uranium 2003: resources, production and demand. Report NEA-05291, OECD/NEA, June 2004. URL: https://www.oecd-nea.org/ndd/pubs/2004/5291-uranium-2003.pdf.

[157]

World Bank Group. World Development Indicators 2012. World Bank Publications, 2012. ISBN 0-8213-8985-8.

[158]

Gamze Ünlü, Florian Maczek, Jihoon Min, Stefan Frank, Fridolin Glatter, Paul Natsuo Kishimoto, Jan Streeck, Nina Eisenmenger, Volker Krey, and Dominik Wiedenhofer. Messageix-materials v1.0.0: representation of material flows and stocks in an integrated assessment model. EGUsphere [preprint], 2024. URL: https://egusphere.copernicus.org/preprints/2024/egusphere-2023-3035/, doi:https://doi.org/10.5194/egusphere-2023-3035.