Source code for message_ix_models.model.transport.config

import logging
from dataclasses import InitVar, dataclass, field, replace
from enum import Enum
from typing import TYPE_CHECKING, Literal, Optional, Union

import message_ix
from genno import Quantity

from message_ix_models import Context, ScenarioInfo, Spec
from message_ix_models.project.navigate import T35_POLICY as NAVIGATE_SCENARIO
from message_ix_models.project.ssp import SSP_2024, ssp_field
from message_ix_models.project.transport_futures import SCENARIO as FUTURES_SCENARIO
from message_ix_models.report.util import as_quantity
from message_ix_models.util import identify_nodes, package_data_path
from message_ix_models.util.config import ConfigHelper

if TYPE_CHECKING:
    from sdmx.model.common import Codelist

log = logging.getLogger(__name__)


[docs] @dataclass class DataSourceConfig(ConfigHelper): """Sources for input data.""" #: Emissions: ID of a dump from a base scenario. emissions: str = "1" #: Non-passenger and non-light-duty vehicles. non_LDV: str = "IKARUS"
[docs] def quantity_field(value): """Field with a mutable default value that is a :class:`.Quantity`.""" return field(default_factory=lambda: as_quantity(value))
[docs] @dataclass class Config(ConfigHelper): """Configuration for MESSAGEix-Transport. This dataclass stores and documents all configuration settings required and used by :mod:`~message_ix_models.model.transport`. It also handles (via :meth:`.from_context`) loading configuration and values from files like :file:`config.yaml`, while respecting higher-level configuration, for instance :attr:`.model.Config.regions`. """ #: Information about the base model. base_model_info: ScenarioInfo = field(default_factory=ScenarioInfo) #: Values for constraints. #: #: "LDV growth_activity_lo", "LDV growth_activity_up" #: Allowable *annual* decrease or increase (respectively) in activity of each LDV #: technology. For example, a value of 0.01 means the activity may increase by 1% #: from one year to the next. For periods of length >1 year, MESSAGE compounds #: the value. Defaults are multiples of 0.0192 = (1.1 ^ 0.2) - 1.0; or ±10% each #: 5 years. See :func:`ldv.constraint_data`. #: "non-LDV growth_new_capacity_up" #: Allowable annual increase in new capacity (roughly, sales) of each technology #: for transport modes *other than* LDV. See :func:`non_ldv.growth_new_capacity`. #: "* initial_*_up" #: Base value for growth constraints. These values are arbitrary. constraint: dict = field( default_factory=lambda: { "LDV growth_activity_lo": -0.0192, "LDV growth_activity_up": 0.0192 * 3.0, "non-LDV growth_activity_lo": -0.0192 * 1.0, "non-LDV growth_activity_up": 0.0192 * 2.0, "non-LDV growth_new_capacity_up": 0.0192 * 1.0, "non-LDV initial_activity_up": 1.0, "non-LDV initial_new_capacity_up": 1.0, } ) #: Scaling factors for costs. #: #: ``ldv nga`` #: Scaling factor to reduce the cost of NGA vehicles. #: #: .. note:: DLM: “applied to the original US-TIMES cost data. That original data #: simply seems too high - much higher than conventional gasoline vehicles in #: the base-year and in future, which is strange. #: #: ``bus inv`` #: Investment costs of bus technologies, relative to the cost of ``ICG_bus``. #: Dictionary with 1 key per ``BUS`` technology. #: #: - Used in ikarus.py #: - This is from the IKARUS data in GEAM_TRP_Technologies.xlsx; sheet #: 'updateTRPdata', with the comment "Original data from Sei (PAO)." #: - This probably refers to some source that gave relative costs of different #: buses, in PAO, for this year; it is applied across all years. cost: dict = field( default_factory=lambda: { # "ldv nga": 0.85, "bus inv": { "ICH_bus": 1.153, # ie. 150,000 / 130,000 "PHEV_bus": 1.153, "FC_bus": 1.538, # ie. 200,000 / 130,000 "FCg_bus": 1.538, "FCm_bus": 1.538, }, } ) #: Sources for input data. data_source: DataSourceConfig = field(default_factory=DataSourceConfig) #: Set of modes handled by demand projection. This list must correspond to groups #: specified in the corresponding technology.yaml file. #: #: .. todo:: Read directly from technology.yaml demand_modes: list[str] = field( default_factory=lambda: ["LDV", "2W", "AIR", "BUS", "RAIL"] ) #: Include dummy ``demand`` data for testing and debugging. dummy_demand: bool = False #: Include dummy data for LDV technologies. dummy_LDV: bool = False #: Include dummy technologies supplying commodities required by transport, for #: testing and debugging. dummy_supply: bool = False #: Various efficiency factors. efficiency: dict = field( default_factory=lambda: { "*": 0.2, "hev": 0.2, "phev": 0.2, "fcev": 0.2, # Similar to 'cost/bus inv' above, except for output efficiency. "bus output": { "ICH_bus": 1.424, # ie. 47.6 / 33.42 "PHEV_bus": 1.424, "FC_bus": 1.563, # ie. 52.25 / 33.42 "FCg_bus": 1.563, "FCm_bus": 1.563, }, } ) #: Generate relation entries for emissions. emission_relations: bool = True #: Various other factors. factor: dict = field(default_factory=dict) #: If :obj:`True` (the default), do not record/preserve parameter data when removing #: set elements from the base model. fast: bool = True #: Fixed future point for total passenger activity. fixed_GDP: Quantity = quantity_field("1500 kUSD_2005 / passenger / year") #: Fixed future point for total passenger activity. #: #: AJ: Assuming mean speed of the high-speed transport is 330 km/h leads to 132495 #: passenger km / capita / year (Schafer & Victor 2000). #: Original comment (DLM): “Assume only half the speed (330 km/h) and not as steep a #: curve.” fixed_pdt: Quantity = quantity_field("132495 km / year") #: Load factors for vehicles [tonne km per vehicle km]. #: #: ``F ROAD``: similar to IEA “Future of Trucks” (2017) values; see #: .transport.freight. Alternately use 5.0, similar to Roadmap 2017 values. load_factor: dict = field( default_factory=lambda: { "F ROAD": 10.0, "F RAIL": 10.0, } ) #: Logit share exponents or cost distribution parameters [0] lamda: float = -2.0 #: Period in which LDV costs match those of a reference region. #: Dimensions: (node,). ldv_cost_catch_up_year: dict = field(default_factory=dict) #: Method for calibrating LDV stock and sales: #: #: - :py:`"A"`: use data from :file:`ldv-new-capacity.csv`, if it exists. #: - :py:`"B"`: use func:`.ldv.stock`; see the function documentation. ldv_stock_method: Literal["A", "B"] = "B" #: Tuples of (node, technology (transport mode), commodity) for which minimum #: activity should be enforced. See :func:`.non_ldv.bound_activity_lo`. minimum_activity: dict[tuple[str, tuple[str, ...], str], float] = field( default_factory=dict ) #: Base year shares of activity by mode. This should be the stem of a CSV file in #: the directory :file:`data/transport/{regions}/mode-share/`. mode_share: str = "default" #: List of modules containing model-building calculations. modules: list[str] = field( default_factory=lambda: ( "groups demand freight ikarus ldv disutility non_ldv plot data" ).split() ) #: Used by :func:`.get_USTIMES_MA3T` to map MESSAGE regions to U.S. census divisions #: appearing in MA³T. node_to_census_division: dict = field(default_factory=dict) #: **Temporary** setting for the SSP 2024 project: indicates whether the base #: scenario used is a policy (carbon pricing) scenario, or not. This currently does #: not affect *any* behaviour of :mod:`~message_ix_models.model.transport` except #: the selection of a base scenario via :func:`.base_scenario_url`. policy: bool = False #: Flags for distinct scenario features according to projects. In addition to #: providing values directly, this can be set by passing :attr:`futures_scenario` or #: :attr:`navigate_scenario` to the constructor, or by calling #: :meth:`set_futures_scenario` or :meth:`set_navigate_scenario` on an existing #: Config instance. #: #: :mod:`.transport.build` and :mod:`.transport.report` code will respond to these #: settings in documented ways. project: dict[str, Enum] = field( default_factory=lambda: dict( futures=FUTURES_SCENARIO.BASE, navigate=NAVIGATE_SCENARIO.REF ) ) #: Scaling factors for production function [0] scaling: float = 1.0 #: Mapping from nodes to other nodes towards which share weights should converge. share_weight_convergence: dict = field(default_factory=dict) #: Specification for the structure of MESSAGEix-Transport, processed from contents #: of :file:`set.yaml` and :file:`technology.yaml`. spec: Spec = field(default_factory=Spec) #: Speeds of transport modes. The labels on the 't' dimension must match #: :attr:`demand_modes`. Source: Schäefer et al. (2010) #: #: .. note:: Temporarily ignored for :pull:`551`; data are read instead from #: :file:`speed.csv`. speeds: Quantity = quantity_field( { "_dim": "t", "_unit": "km / hour", "LDV": 54.5, # = 31 + 78 / 2 "2W": 31, "AIR": 270, "BUS": 19, "RAIL": 35, } ) #: Enum member indicating a Shared Socioeconomic Pathway, if any, to use for #: exogenous data. ssp: ssp_field = ssp_field(default=SSP_2024["2"]) #: :any:`True` if a base model or MESSAGEix-Transport scenario (possibly with #: solution data) is available. with_scenario: bool = False #: :any:`True` if solution data is available. with_solution: bool = False #: Work hours per year, used to compute the value of time. work_hours: Quantity = quantity_field("1600 hours / passenger / year") #: Year for share convergence. year_convergence: int = 2110 # Init-only variables #: Extra entries for :attr:`modules`, supplied to the constructor. May be either a #: space-delimited string (:py:`"module_a -module_b"`) or sequence of strings. #: Values prefixed with a hyphen (:py:`"-module_b"`) are *removed* from #: :attr:`.modules`. extra_modules: InitVar[Union[str, list[str]]] = None #: Identifier of a Transport Futures scenario, used to update :attr:`project` via #: :meth:`.ScenarioFlags.parse_futures`. futures_scenario: InitVar[str] = None #: Identifiers of NAVIGATE T3.5 demand-side scenarios, used to update #: :attr:`project` via :meth:`.ScenarioFlags.parse_navigate`. navigate_scenario: InitVar[str] = None def __post_init__(self, extra_modules, futures_scenario, navigate_scenario): # Handle extra_modules em = extra_modules or [] for m in em.split() if isinstance(em, str) else em: if m.startswith("-"): try: idx = self.modules.index(m[1:]) except ValueError: pass else: self.modules.pop(idx) else: self.modules.append(m) # Handle values for :attr:`futures_scenario` and :attr:`navigate_scenario` self.set_futures_scenario(futures_scenario) self.set_navigate_scenario(navigate_scenario)
[docs] @classmethod def from_context( cls, context: Context, scenario: Optional[message_ix.Scenario] = None, options: Optional[dict] = None, ) -> "Config": """Configure `context` for building MESSAGEix-Transport. 1. If `scenario` is given, ``context.model.regions`` is updated to match. See :func:`.identify_nodes`. 2. ``context.transport`` is set to an instance of :class:`Config`. Configuration files and metadata are read and override the class defaults. The files listed in :data:`.METADATA` are stored in the respective attributes, e.g. :attr:`set` corresponding to :file:`data/transport/set.yaml`. If a subdirectory of :file:`data/transport/` exists corresponding to ``context.model.regions`` then the files are loaded from that subdirectory, for instance :file:`data/transport/ISR/set.yaml` is preferred to :file:`data/transport/set.yaml`. """ from .structure import make_spec # Handle arguments options = options or dict() try: # Identify the node codelist used in `scenario` regions = identify_nodes(scenario) if scenario else context.model.regions except (AttributeError, ValueError): pass else: if context.model.regions != regions: log.info( f"Override Context.model.regions={context.model.regions!r} with " f"{regions!r} from scenario contents" ) context.model.regions = regions # Default configuration config = cls() try: # Update with region-specific configuration config.read_file( package_data_path("transport", context.model.regions, "config.yaml") ) except FileNotFoundError as e: log.warning(e) # Data structure that cannot be stored in YAML if isinstance(config.minimum_activity, list): config.minimum_activity = { tuple(row[:-1]): row[-1] for row in config.minimum_activity } # Separate data source options ds_options = options.pop("data source", {}) # Update values, store on context result = context["transport"] = replace( config, **options, data_source=config.data_source.replace(**ds_options) ) # Create the structural spec result.spec = make_spec(context.model.regions) return result
[docs] def check(self): """Check consistency of :attr:`project`.""" s1 = self.project["futures"] s2 = self.project["navigate"] if all(map(lambda s: s.value > 0, [s1, s2])): raise ValueError(f"Scenario settings {s1} and {s2} are not compatible")
[docs] def set_futures_scenario(self, value: Optional[str]) -> None: """Update :attr:`project` from a string indicating a Transport Futures scenario. See :meth:`ScenarioFlags.parse_futures`. This method alters :attr:`mode_share` and :attr:`fixed_demand` according to the `value` (if any). """ if value is None: return s = FUTURES_SCENARIO.parse(value) self.project.update(futures=s) self.check() self.mode_share = s.id() if self.mode_share == "A---": log.info(f"Set fixed demand for TF scenario {value!r}") self.fixed_demand = as_quantity("275000 km / year")
[docs] def set_navigate_scenario(self, value: Optional[str]) -> None: """Update :attr:`project` from a string representing a NAVIGATE scenario. See :meth:`ScenarioFlags.parse_navigate`. """ if value is None: return s = NAVIGATE_SCENARIO.parse(value) self.project.update(navigate=s) self.check()
[docs] def get_cl_scenario() -> "Codelist": """Generate ``Codelist=IIASA_ECE:CL_TRANSPORT_SCENARIO``. This code lists contains unique IDs for scenarios supported by the MESSAGEix-Transport workflow (:mod:`.transport.workflow`), plus the annotations: - ``SSP-URN``: the URN of a code identifying the SSP scenario to be used for sociodemographic data, for instance "urn:sdmx:org.sdmx.infomodel.codelist.Code=ICONICS:SSP(2024).1". - ``is-LED-scenario``: either "True" or "False". - ``EDITS-activity-id``: either "None", "'CA'", or "'HA'". """ from sdmx.model import common from message_ix_models.util.sdmx import read, write # Other data structures as_ = read("IIASA_ECE:AGENCIES") cl_ssp_2024 = read("ICONICS:SSP(2024)") cl = common.Codelist( id="CL_TRANSPORT_SCENARIO", maintainer=as_["IIASA_ECE"], version="1.0.0" ) def _a(*values): """Shorthand to generate the annotations.""" return [ common.Annotation(id="SSP-URN", text=values[0]), common.Annotation(id="is-LED-scenario", text=repr(values[1])), common.Annotation(id="EDITS-activity-id", text=repr(values[2])), ] for ssp_code in cl_ssp_2024: cl.append( common.Code( id=f"SSP{ssp_code.id}", annotations=_a(ssp_code.urn, False, None) ) ) for ssp in ("1", "2"): ssp_code = cl_ssp_2024[ssp] cl.append( common.Code( id=f"LED-SSP{ssp_code.id}", name=f"Low Energy Demand/High-with-Low scenario with SSP{ssp_code.id} " "demographics", annotations=_a(ssp_code.urn, True, None), ) ) for id_, name in (("CA", "Current Ambition"), ("HA", "High Ambition")): cl.append( common.Code( id=f"EDITS-{id_}", name=f"EDITS scenario with ITF PASTA {id_!r} activity", annotations=_a(cl_ssp_2024["2"].urn, False, id_), ) ) write(cl) return cl