Source code for message_ix_models.tools.gfei

"""Handle data from the Global Fuel Economy Initiative (GFEI)."""

import logging
from typing import TYPE_CHECKING

import genno
import plotnine as p9

from message_ix_models.tools.exo_data import ExoDataSource, register_source
from message_ix_models.util import path_fallback

if TYPE_CHECKING:
    from genno import Computer, Quantity

    from message_ix_models import Context

log = logging.getLogger(__name__)


[docs]@register_source class GFEI(ExoDataSource): """Provider of exogenous data from the GFEI 2017 data source. To use data from this source, call :func:`.exo_data.prepare_computer` with the arguments: - `source`: "GFEI". - `source_kw` including: - `plot` (optional, default :any:`False`): add a task with the key "plot GFEI debug" to generate diagnostic plot using :class:`.Plot`. - `aggregate`, `interpolate`: see :meth:`.ExoDataSource.transform`. The source data: - is derived from https://theicct.org/publications/gfei-tech-policy-drivers-2005-2017, specifically the data underlying “Figure 37. Fuel consumption range by type of powertrain and vehicle size, 2017”. - has resolution of individual countries. - corresponds to new vehicle registrations in 2017. - has units of megajoule / kilometre, converted from original litres of gasoline equivalent per 100 km. .. note:: if py:`source_kw["aggregate"] is True`, the aggregation performed is an unweighted :func:`sum`. To produce meaningful values for multi-country regions, instead perform perform a weighted mean using appropriate weights; for instance the vehicle activity for each country. The class currently **does not** do this automatically. """ id = "GFEI" #: By default, do not aggregate. aggregate = False #: By default, do not interpolate. interpolate = False def __init__(self, source, source_kw): if source != self.id: raise ValueError(source) self.plot = source_kw.pop("plot", False) self.raise_on_extra_kw(source_kw) # Set the name of the returned quantity self.name = "fuel economy" self.path = path_fallback( "transport", "GFEI_FE_by_Powertrain_2017.csv", where="private test" ) if "test" in self.path.parts: log.warning(f"Reading random data from {self.path}") def __call__(self): import genno.operator from message_ix_models.util.pycountry import iso_3166_alpha_3 def relabel_n(qty: "Quantity") -> "Quantity": labels = {n: iso_3166_alpha_3(n) for n in qty.coords["n"].data} return genno.operator.relabel(qty, {"n": labels}) # - Read the CSV file, rename columns. # - Assign the y value. # - Convert units. return ( genno.operator.load_file( self.path, dims={"Country": "n", "FuelTypeReduced": "t"} ) .pipe(relabel_n) .pipe(lambda qty: qty.expand_dims(y=[2017])) .pipe(genno.operator.convert_units, "MJ / (vehicle km)") )
[docs] def transform(self, c: "Computer", base_key: genno.Key) -> genno.Key: """Prepare `c` to transform raw data from `base_key`.""" ks = genno.KeySeq(super().transform(c, base_key)) if self.plot: # Path for debug output context: "Context" = c.graph["context"] debug_path = context.get_local_path("debug") debug_path.mkdir(parents=True, exist_ok=True) c.configure(output_dir=debug_path) c.add(f"plot {self.id} debug", Plot, ks.base) return ks.base
[docs]class Plot(genno.compat.plotnine.Plot): """Diagnostic plot of processed data.""" basename = "GFEI-fuel-economy-t" static = [ p9.aes(x="n", y="value"), p9.geom_col(stat="identity", position="dodge"), p9.theme(axis_text_x=p9.element_text(rotation=90, hjust=1)), ]
[docs] def generate(self, data): for technology, group_df in data.groupby("t"): yield p9.ggplot(group_df) + self.static + p9.ggtitle(technology)