Source code for message_ix_models.tests.tools.iea.test_eei

import genno
import pandas as pd
import pytest

from message_ix_models.tools.exo_data import prepare_computer
from message_ix_models.tools.iea.eei import IEA_EEI  # noqa: F401
from message_ix_models.util import HAS_MESSAGE_DATA

pytestmark = pytest.mark.skipif(
    condition=not HAS_MESSAGE_DATA, reason="No fuzzed/random test data for this source."
)

# Infill data for R12 nodes not present in the IEA data
# NB these are hand-picked as of 2022-07-20 so that the ratio of freight activity / GDP
#    is roughly consistent across regions
# FIXME replace with actual data
R12_MAP = [
    ("R12_EEU", "R12_AFR"),
    ("R12_NAM", "R12_CHN"),
    ("R12_EEU", "R12_EEU"),
    ("R12_FSU", "R12_FSU"),
    ("R12_LAM", "R12_LAM"),
    ("R12_PAO", "R12_MEA"),
    ("R12_NAM", "R12_NAM"),
    ("R12_PAO", "R12_PAO"),
    ("R12_LAM", "R12_PAS"),
    ("R12_LAM", "R12_RCPA"),
    ("R12_WEU", "R12_SAS"),
    ("R12_WEU", "R12_WEU"),
]


[docs] class TestIEA_EEI: @pytest.mark.parametrize( "source_kw, dimensionality", ( ( dict( indicator="Passenger load factor", # broadcast_map="bc:n-n2", ), {"Mode/vehicle type", "SECTOR"}, ), ), ) @pytest.mark.parametrize( "regions, aggregate, N_n", ( ("R12", False, 28), ("R12", True, 5), ), ) def test_prepare_computer( # pragma: no cover cf. iiasa/message-ix-models#164 self, test_context, source_kw, dimensionality, regions, aggregate, N_n ): test_context.model.regions = regions source = "IEA EEI" source_kw.update(aggregate=aggregate) c = genno.Computer() s = pd.Series(1.0, index=pd.MultiIndex.from_tuples(R12_MAP, names=["n", "n2"])) c.add("bc:n-n2", genno.Quantity(s)) keys = prepare_computer(test_context, c, source, source_kw) # Keys have informative names assert "passenger load factor" == keys[0].name # Preparation of data runs successfully result = c.get(keys[0]) # assert 1394 == result.size assert 400 <= result.size assert {"n", "y"} | dimensionality == set(result.dims) assert N_n == len(result.coords["n"])