Source code for message_ix_models.model.water.data.water_for_ppl

"""Prepare data for water use for cooling & energy technologies."""

from typing import Any

import numpy as np
import pandas as pd
from message_ix import make_df

from message_ix_models import Context
from message_ix_models.model.water.data.water_supply import map_basin_region_wat
from message_ix_models.util import (
    broadcast,
    make_matched_dfs,
    minimum_version,
    package_data_path,
    same_node,
)


[docs]def missing_tech(x: pd.Series) -> pd.Series: """Assign values to missing data. It goes through the input data frame and extract the technologies which don't have input values and then assign manual values to those technologies along with assigning them an arbitrary level i.e dummy supply """ data_dic = { "geo_hpl": 1 / 0.850, "geo_ppl": 1 / 0.385, "nuc_hc": 1 / 0.326, "nuc_lc": 1 / 0.326, "solar_th_ppl": 1 / 0.385, } if data_dic.get(x["technology"]): if x["level"] == "cooling": return pd.Series((data_dic.get(x["technology"]), "dummy_supply")) else: return pd.Series((data_dic.get(x["technology"]), x["level"])) else: return pd.Series({"value": x["value"], "level": x["level"]})
[docs]def cooling_fr(x: pd.Series) -> float: """Calculate cooling fraction Returns ------- The calculated cooling fraction after for two categories; 1. Technologies that produce heat as an output cooling_fraction(h_cool) = input value(hi) - 1 Simply subtract 1 from the heating value since the rest of the part is already accounted in the heating value 2. Rest of technologies h_cool = hi -Hi* h_fg - 1, where: h_fg (flue gasses losses) = 0.1 (10% assumed losses) """ try: if "hpl" in x["parent_tech"]: return x["value"] - 1 else: return x["value"] - (x["value"] * 0.1) - 1 except KeyError: return x["value"] - (x["value"] * 0.1) - 1
[docs]def shares( x: pd.Series, context: "Context", search_cols_cooling_fraction: list, hold_df: pd.DataFrame, search_cols: list, ) -> pd.Series: """Process share and cooling fraction. Returns ------- Product of value of shares of cooling technology types of regions with corresponding cooling fraction """ for col in search_cols_cooling_fraction: # MAPPING ISOCODE to region name, assume one country only col2 = context.map_ISO_c[col] if context.type_reg == "country" else col cooling_fraction = hold_df[ (hold_df["node_loc"] == col2) & (hold_df["technology_name"] == x["technology"]) ]["cooling_fraction"] x[col] = x[col] * cooling_fraction results: list[Any] = [] for i in x: if isinstance(i, str): results.append(i) else: if not len(i): return pd.Series( [i for i in range(len(search_cols) - 1)] + ["delme"], index=search_cols, ) else: results.append(float(i)) return pd.Series(results, index=search_cols)
[docs]def hist_act(x: pd.Series, context: "Context", hold_cost: pd.DataFrame) -> list: """Calculate historical activity of cooling technology. The data for shares is read from ``cooltech_cost_and_shares_ssp_msg.csv`` Returns ------- hist_activity(cooling_tech) = hist_activitiy(parent_technology) * share *cooling_fraction """ tech_df = hold_cost[ hold_cost["technology"].str.startswith(x.technology) ] # [x.node_loc] node_search = context.regions if context.type_reg == "country" else x["node_loc"] node_loc = x["node_loc"] technology = x["technology"] cooling_technologies = list(tech_df["technology"]) new_values = tech_df[node_search] * x.value return [ [ node_loc, technology, cooling_technology, x.year_act, x.value, new_value, x.unit, ] for new_value, cooling_technology in zip(new_values, cooling_technologies) ]
[docs]def hist_cap(x: pd.Series, context: "Context", hold_cost: pd.DataFrame) -> list: """Calculate historical capacity of cooling technology. The data for shares is read from ``cooltech_cost_and_shares_ssp_msg.csv`` Returns ------- hist_new_capacity(cooling_tech) = historical_new_capacity(parent_technology)* share * cooling_fraction """ tech_df = hold_cost[ hold_cost["technology"].str.startswith(x.technology) ] # [x.node_loc] if context.type_reg == "country": node_search = context.regions else: node_search = x["node_loc"] # R11_EEU node_loc = x["node_loc"] technology = x["technology"] cooling_technologies = list(tech_df["technology"]) new_values = tech_df[node_search] * x.value return [ [ node_loc, technology, cooling_technology, x.year_vtg, x.value, new_value, x.unit, ] for new_value, cooling_technology in zip(new_values, cooling_technologies) ]
# water & electricity for cooling technologies
[docs]@minimum_version("message_ix 3.7") def cool_tech(context: "Context") -> dict[str, pd.DataFrame]: """Process cooling technology data for a scenario instance. The input values of parent technologies are read in from a scenario instance and then cooling fractions are calculated by using the data from ``tech_water_performance_ssp_msg.csv``. It adds cooling technologies as addons to the parent technologies. The nomenclature for cooling technology is <parenttechnologyname>__<coolingtype>. E.g: `coal_ppl__ot_fresh` Parameters ---------- context : .Context Returns ------- data : dict of (str -> pandas.DataFrame) Keys are MESSAGE parameter names such as 'input', 'fix_cost'. Values are data frames ready for :meth:`~.Scenario.add_par`. Years in the data include the model horizon indicated by ``context["water build info"]``, plus the additional year 2010. """ #: Name of the input file. # The input file mentions water withdrawals and emission heating fractions for # cooling technologies alongwith parent technologies: FILE = "tech_water_performance_ssp_msg.csv" # Investment costs & regional shares of hist. activities of cooling # technologies FILE1 = ( "cooltech_cost_and_shares_" + (f"ssp_msg_{context.regions}" if context.type_reg == "global" else "country") + ".csv" ) # define an empty dictionary results = {} # Reference to the water configuration info = context["water build info"] sub_time = context.time # reading basin_delineation FILE2 = f"basins_by_region_simpl_{context.regions}.csv" PATH = package_data_path("water", "delineation", FILE2) df_node = pd.read_csv(PATH) # Assigning proper nomenclature df_node["node"] = "B" + df_node["BCU_name"].astype(str) df_node["mode"] = "M" + df_node["BCU_name"].astype(str) df_node["region"] = ( context.map_ISO_c[context.regions] if context.type_reg == "country" else f"{context.regions}_" + df_node["REGION"].astype(str) ) node_region = df_node["region"].unique() # reading ppl cooling tech dataframe path = package_data_path("water", "ppl_cooling_tech", FILE) df = pd.read_csv(path) cooling_df = df.loc[df["technology_group"] == "cooling"].copy() # Separate a column for parent technologies of respective cooling # techs cooling_df["parent_tech"] = ( cooling_df["technology_name"] .apply(lambda x: pd.Series(str(x).split("__"))) .drop(columns=1) ) scen = context.get_scenario() # Extracting input database from scenario for parent technologies # Extracting input values from scenario ref_input: pd.DataFrame = scen.par( "input", {"technology": cooling_df["parent_tech"]} ) # Extracting historical activity from scenario ref_hist_act: pd.DataFrame = scen.par( "historical_activity", {"technology": cooling_df["parent_tech"]} ) # Extracting historical capacity from scenario ref_hist_cap: pd.DataFrame = scen.par( "historical_new_capacity", {"technology": cooling_df["parent_tech"]} ) # cooling fraction = H_cool = Hi - 1 - Hi*(h_fg) # where h_fg (flue gasses losses) = 0.1 ref_input["cooling_fraction"] = ref_input["value"] * 0.9 - 1 ref_input[["value", "level"]] = ref_input[["technology", "value", "level"]].apply( missing_tech, axis=1 )[["value", "level"]] # Combines the input df of parent_tech with water withdrawal data input_cool = ( cooling_df.set_index("parent_tech") .combine_first(ref_input.set_index("technology")) .reset_index() ) # Drops NA values from the value column input_cool = input_cool.dropna(subset=["value"]) # Convert year values into integers to be compatibel for model input_cool.year_vtg = input_cool.year_vtg.astype(int) input_cool.year_act = input_cool.year_act.astype(int) # Drops extra technologies from the data input_cool = input_cool[ (input_cool["level"] != "water_supply") & (input_cool["level"] != "cooling") ] input_cool = input_cool[ ~input_cool["technology_name"].str.contains("hpl", na=False) ] input_cool = input_cool[ (input_cool["node_loc"] != f"{context.regions}_GLB") & (input_cool["node_origin"] != f"{context.regions}_GLB") ] input_cool["cooling_fraction"] = input_cool.apply(cooling_fr, axis=1) # Converting water withdrawal units to Km3/GWa # this refers to activity per cooling requirement (heat) input_cool["value_cool"] = ( input_cool["water_withdrawal_mid_m3_per_output"] * 60 * 60 * 24 * 365 * 1e-9 / input_cool["cooling_fraction"] ) input_cool["return_rate"] = 1 - ( input_cool["water_consumption_mid_m3_per_output"] / input_cool["water_withdrawal_mid_m3_per_output"] ) # consumption to be saved in emissions rates for reporting purposes input_cool["consumption_rate"] = ( input_cool["water_consumption_mid_m3_per_output"] / input_cool["water_withdrawal_mid_m3_per_output"] ) input_cool["value_return"] = input_cool["return_rate"] * input_cool["value_cool"] # only for reporting purposes input_cool["value_consumption"] = ( input_cool["consumption_rate"] * input_cool["value_cool"] ) # def foo3(x): # """ # This function is similar to foo2, but it returns electricity values # per unit of cooling for techs that require parasitic electricity demand # """ # if "hpl" in x['index']: # return x['parasitic_electricity_demand_fraction'] # # elif x['parasitic_electricity_demand_fraction'] > 0.0: # return x['parasitic_electricity_demand_fraction'] / x['cooling_fraction'] # Filter out technologies that requires parasitic electricity electr = input_cool[input_cool["parasitic_electricity_demand_fraction"] > 0.0] # Make a new column 'value_cool' for calculating values against technologies electr["value_cool"] = ( electr["parasitic_electricity_demand_fraction"] / electr["cooling_fraction"] ) # Filters out technologies requiring saline water supply saline_df = input_cool[ input_cool["technology_name"].str.endswith("ot_saline", na=False) ] # input_cool_minus_saline_elec_df con1 = input_cool["technology_name"].str.endswith("ot_saline", na=False) con2 = input_cool["technology_name"].str.endswith("air", na=False) icmse_df = input_cool[(~con1) & (~con2)] inp = make_df( "input", node_loc=electr["node_loc"], technology=electr["technology_name"], year_vtg=electr["year_vtg"], year_act=electr["year_act"], mode=electr["mode"], node_origin=electr["node_origin"], commodity="electr", level="secondary", time="year", time_origin="year", value=electr["value_cool"], unit="GWa", ) # once through and closed loop freshwater inp = pd.concat( [ inp, make_df( "input", node_loc=icmse_df["node_loc"], technology=icmse_df["technology_name"], year_vtg=icmse_df["year_vtg"], year_act=icmse_df["year_act"], mode=icmse_df["mode"], node_origin=icmse_df["node_origin"], commodity="freshwater", level="water_supply", time="year", time_origin="year", value=icmse_df["value_cool"], unit="km3/GWa", ), ] ) # saline cooling technologies inp = pd.concat( [ inp, make_df( "input", node_loc=saline_df["node_loc"], technology=saline_df["technology_name"], year_vtg=saline_df["year_vtg"], year_act=saline_df["year_act"], mode=saline_df["mode"], node_origin=saline_df["node_origin"], commodity="saline_ppl", level="saline_supply", time="year", time_origin="year", value=saline_df["value_cool"], unit="km3/GWa", ), ] ) # Drops NA values from the value column inp = inp.dropna(subset=["value"]) # append the input data to results results["input"] = inp # add water consumption as emission factor, also for saline tecs emiss_df = input_cool[(~con2)] emi = make_df( "emission_factor", node_loc=emiss_df["node_loc"], technology=emiss_df["technology_name"], year_vtg=emiss_df["year_vtg"], year_act=emiss_df["year_act"], mode=emiss_df["mode"], emission="fresh_return", value=emiss_df["value_return"], unit="km3/yr", ) results["emission_factor"] = emi # add water return flows for cooling tecs # Use share of basin availability to distribute the return flow from df_sw = map_basin_region_wat(context) df_sw.drop(columns={"mode", "date", "MSGREG"}, inplace=True) df_sw.rename( columns={"region": "node_dest", "time": "time_dest", "year": "year_act"}, inplace=True, ) df_sw["time_dest"] = df_sw["time_dest"].astype(str) if context.nexus_set == "nexus": out = pd.DataFrame() for nn in icmse_df.node_loc.unique(): # input cooling fresh basin icfb_df = icmse_df[icmse_df["node_loc"] == nn] bs = list(df_node[df_node["region"] == nn]["node"]) out_t = ( make_df( "output", node_loc=icfb_df["node_loc"], technology=icfb_df["technology_name"], year_vtg=icfb_df["year_vtg"], year_act=icfb_df["year_act"], mode=icfb_df["mode"], # node_origin=icmse_df["node_origin"], commodity="surfacewater_basin", level="water_avail_basin", time="year", value=icfb_df["value_return"], unit="km3/GWa", ) .pipe(broadcast, node_dest=bs, time_dest=sub_time) .merge(df_sw, how="left") ) # multiply by basin water availability share out_t["value"] = out_t["value"] * out_t["share"] out_t.drop(columns={"share"}, inplace=True) out = pd.concat([out, out_t]) out = out.dropna(subset=["value"]) out.reset_index(drop=True, inplace=True) results["output"] = out # costs and historical parameters path1 = package_data_path("water", "ppl_cooling_tech", FILE1) cost = pd.read_csv(path1) # Combine technology name to get full cooling tech names cost["technology"] = cost["utype"] + "__" + cost["cooling"] # Filtering out 2010 data to use for historical values input_cool_2010 = input_cool[ (input_cool["year_act"] == 2010) & (input_cool["year_vtg"] == 2010) ] # Filter out columns that contain 'mix' in column name columns = [col for col in cost.columns if "mix_" in col] # Rename column names to R11 to match with the previous df cost.rename(columns=lambda name: name.replace("mix_", ""), inplace=True) search_cols = [ col for col in cost.columns if context.regions in col or "technology" in col ] hold_df = input_cool_2010[ ["node_loc", "technology_name", "cooling_fraction"] ].drop_duplicates() search_cols_cooling_fraction = [col for col in search_cols if col != "technology"] # Apply function to the hold_cost = cost[search_cols].apply( shares, axis=1, context=context, search_cols_cooling_fraction=search_cols_cooling_fraction, hold_df=hold_df, search_cols=search_cols, ) hold_cost = hold_cost[hold_cost["technology"] != "delme"] changed_value_series = ref_hist_act.apply( hist_act, axis=1, context=context, hold_cost=hold_cost ) changed_value_series_flat = [ row for series in changed_value_series for row in series ] columns = [ "node_loc", "technology", "cooling_technology", "year_act", "value", "new_value", "unit", ] # dataframe for historical activities of cooling techs act_value_df = pd.DataFrame(changed_value_series_flat, columns=columns) changed_value_series = ref_hist_cap.apply( hist_cap, axis=1, context=context, hold_cost=hold_cost ) changed_value_series_flat = [ row for series in changed_value_series for row in series ] columns = [ "node_loc", "technology", "cooling_technology", "year_vtg", "value", "new_value", "unit", ] cap_value_df = pd.DataFrame(changed_value_series_flat, columns=columns) # Make model compatible df for historical activitiy h_act = make_df( "historical_activity", node_loc=act_value_df["node_loc"], technology=act_value_df["cooling_technology"], year_act=act_value_df["year_act"], mode="M1", time="year", value=act_value_df["new_value"], # TODO finalize units unit="GWa", ) results["historical_activity"] = h_act # Make model compatible df for histroical new capacity h_cap = make_df( "historical_new_capacity", node_loc=cap_value_df["node_loc"], technology=cap_value_df["cooling_technology"], year_vtg=cap_value_df["year_vtg"], value=cap_value_df["new_value"], unit="GWa", ) results["historical_new_capacity"] = h_cap # Add upper bound for seawater cooling # sums up all the historical activities of seawater cooling technologies # h_act_saline = h_act[h_act["technology"].str.endswith("saline")] # h_act_saline = h_act_saline[h_act_saline["year_act"] == 2015] # h_act_saline.drop(columns=["year_act", "mode", "time", "unit"], inplace=True) # h_act_saline = h_act_saline.groupby(["node_loc"]).sum() # inp_saline = inp[inp["technology"].str.endswith("ot_saline")] # inp_saline = inp_saline[ # (inp_saline["year_vtg"] == 2015) & (inp_saline["year_act"] == 2015) # ] # inp_saline.drop( # columns=[ # "year_vtg", # "commodity", # "year_act", # "mode", # "level", # "time", # "time_origin", # "unit", # "node_origin", # ], # inplace=True, # ) # water_fr = inp_saline.groupby(["node_loc"]).mean() # # multiplying input values of water withdrawal with # bound_saline = water_fr.mul(h_act_saline) # bound_up = make_df( # "bound_activity_up", # node_loc=bound_saline.index, # technology="extract_salinewater", # mode="M1", # time="year", # value=bound_saline["value"].values, # unit="km3/year", # ).pipe(broadcast, year_act=info.Y) # results["bound_activity_up"] = bound_up # Filter out just cl_fresh & air technologies for adding inv_cost in model, # The rest of technologies are assumed to have costs included in parent technologies # con3 = cost['technology'].str.endswith("cl_fresh") # con4 = cost['technology'].str.endswith("air") # con5 = cost.technology.isin(input_cool['technology_name']) # inv_cost = cost[(con3) | (con4)] inv_cost = cost.copy() # Manually removing extra technologies not required # TODO make it automatic to not include the names manually techs_to_remove = [ "mw_ppl__ot_fresh", "mw_ppl__ot_saline", "mw_ppl__cl_fresh", "mw_ppl__air", "nuc_fbr__ot_fresh", "nuc_fbr__ot_saline", "nuc_fbr__cl_fresh", "nuc_fbr__air", "nuc_htemp__ot_fresh", "nuc_htemp__ot_saline", "nuc_htemp__cl_fresh", "nuc_htemp__air", ] inv_cost = inv_cost[~inv_cost["technology"].isin(techs_to_remove)] # Converting the cost to USD/GW inv_cost["investment_USD_per_GW_mid"] = ( inv_cost["investment_million_USD_per_MW_mid"] * 1e3 ) inv_cost = ( make_df( "inv_cost", technology=inv_cost["technology"], value=inv_cost["investment_USD_per_GW_mid"], unit="USD/GWa", ) .pipe(same_node) .pipe(broadcast, node_loc=node_region, year_vtg=info.Y) ) results["inv_cost"] = inv_cost # Addon conversion adon_df = input_cool.copy() # Add 'cooling_' before name of parent technologies that are type_addon # nomenclature adon_df["tech"] = "cooling__" + adon_df["parent_tech"].astype(str) # technology : 'parent technology' and type_addon is type of addons such # as 'cooling__bio_hpl' addon_df = make_df( "addon_conversion", node=adon_df["node_loc"], technology=adon_df["parent_tech"], year_vtg=adon_df["year_vtg"], year_act=adon_df["year_act"], mode=adon_df["mode"], time="year", type_addon=adon_df["tech"], value=adon_df["cooling_fraction"], unit="km3/GWa", ) results["addon_conversion"] = addon_df # Addon_lo will remain 1 for all cooling techs so it allows 100% activity of # parent technologies addon_lo = make_matched_dfs(addon_df, addon_lo=1) results["addon_lo"] = addon_lo["addon_lo"] # technical lifetime # make_matched_dfs didn't map all technologies # tl = make_matched_dfs(inv_cost, # technical_lifetime = 30) year = info.Y if 2010 in year: pass else: year.insert(0, 2010) tl = ( make_df( "technical_lifetime", technology=inp["technology"].drop_duplicates(), value=30, unit="year", ) .pipe(broadcast, year_vtg=year, node_loc=node_region) .pipe(same_node) ) results["technical_lifetime"] = tl cap_fact = make_matched_dfs(inp, capacity_factor=1) # Climate Impacts on freshwater cooling capacity # Taken from # https://www.sciencedirect.com/science/article/ # pii/S0959378016301236?via%3Dihub#sec0080 if context.RCP == "no_climate": df = cap_fact["capacity_factor"] else: df = cap_fact["capacity_factor"] # reading ppl cooling impact dataframe path = package_data_path( "water", "ppl_cooling_tech", "power_plant_cooling_impact_MESSAGE.xlsx" ) df_impact = pd.read_excel(path, sheet_name=f"{context.regions}_{context.RCP}") for n in df_impact["node"]: conditions = [ df["technology"].str.contains("fresh") & (df["year_act"] >= 2025) & (df["year_act"] < 2050) & (df["node_loc"] == n), df["technology"].str.contains("fresh") & (df["year_act"] >= 2050) & (df["year_act"] < 2070) & (df["node_loc"] == n), df["technology"].str.contains("fresh") & (df["year_act"] >= 2070) & (df["node_loc"] == n), ] choices = [ df_impact[(df_impact["node"] == n)]["2025s"], df_impact[(df_impact["node"] == n)]["2050s"], df_impact[(df_impact["node"] == n)]["2070s"], ] df["value"] = np.select(conditions, choices, default=df["value"]) results["capacity_factor"] = df # results = {par_name: pd.concat(dfs) for par_name, dfs in results.items()} # growth activity low to allow the cooling techs to be operational g_lo = make_df( "growth_activity_lo", technology=inp["technology"].drop_duplicates(), value=-0.05, unit="%", time="year", ).pipe(broadcast, year_act=info.Y, node_loc=node_region) # Alligining certain technologies with growth constriants g_lo.loc[g_lo["technology"].str.contains("bio_ppl|loil_ppl"), "value"] = -0.5 g_lo.loc[g_lo["technology"].str.contains("coal_ppl_u|coal_ppl"), "value"] = -0.5 g_lo.loc[ (g_lo["technology"].str.contains("coal_ppl_u|coal_ppl")) & (g_lo["node_loc"].str.contains("CPA|PAS")), "value", ] = -1 results["growth_activity_lo"] = g_lo # growth activity up on saline water inp_saline = inp[inp["technology"].str.endswith("ot_saline")] g_up = make_df( "growth_activity_up", technology=inp_saline["technology"].drop_duplicates(), value=0.05, unit="%", time="year", ).pipe(broadcast, year_act=info.Y, node_loc=node_region) results["growth_activity_up"] = g_up # # adding initial activity # in_lo = h_act.copy() # in_lo.drop(columns='mode', inplace=True) # in_lo = in_lo[in_lo['year_act'] == 2015] # in_lo_1 = make_df('initial_activity_lo', # node_loc=in_lo['node_loc'], # technology=in_lo['technology'], # time='year', # value=in_lo['value'], # unit='GWa').pipe(broadcast, year_act=[2015, 2020]) # results['initial_activity_lo'] = in_lo_1 return results
# Water use & electricity for non-cooling technologies
[docs]def non_cooling_tec(context: "Context") -> dict[str, pd.DataFrame]: """Process data for water usage of power plants (non-cooling technology related). Water withdrawal values for power plants are read in from ``tech_water_performance_ssp_msg.csv`` Parameters ---------- context : .Context Returns ------- data : dict of (str -> pandas.DataFrame) Keys are MESSAGE parameter names such as 'input', 'fix_cost'. Values are data frames ready for :meth:`~.Scenario.add_par`. Years in the data include the model horizon indicated by ``context["transport build info"]``, plus the additional year 2010. """ results = {} FILE = "tech_water_performance_ssp_msg.csv" path = package_data_path("water", "ppl_cooling_tech", FILE) df = pd.read_csv(path) cooling_df = df.copy() cooling_df = cooling_df.loc[cooling_df["technology_group"] == "cooling"] # Separate a column for parent technologies of respective cooling # techs cooling_df["parent_tech"] = ( cooling_df["technology_name"] .apply(lambda x: pd.Series(str(x).split("__"))) .drop(columns=1) ) non_cool_df = df[ (df["technology_group"] != "cooling") & (df["water_supply_type"] == "freshwater_supply") ] scen = context.get_scenario() tec_lt = scen.par("technical_lifetime") all_tech = list(tec_lt["technology"].unique()) # all_tech = list(scen.set("technology")) tech_non_cool_csv = list(non_cool_df["technology_name"]) techs_to_remove = [tec for tec in tech_non_cool_csv if tec not in all_tech] non_cool_df = non_cool_df[~non_cool_df["technology_name"].isin(techs_to_remove)] non_cool_df = non_cool_df.rename(columns={"technology_name": "technology"}) non_cool_df["value"] = ( non_cool_df["water_withdrawal_mid_m3_per_output"] * 60 * 60 * 24 * 365 * (1e-9) ) non_cool_tech = list(non_cool_df["technology"].unique()) n_cool_df = scen.par("output", {"technology": non_cool_tech}) n_cool_df = n_cool_df[ (n_cool_df["node_loc"] != "R11_GLB") & (n_cool_df["node_dest"] != "R11_GLB") ] n_cool_df_merge = pd.merge(n_cool_df, non_cool_df, on="technology", how="right") n_cool_df_merge.dropna(inplace=True) # Input dataframe for non cooling technologies # only water withdrawals are being taken # Only freshwater supply is assumed for simplicity inp_n_cool = make_df( "input", technology=n_cool_df_merge["technology"], value=n_cool_df_merge["value_y"], unit="km3/GWa", level="water_supply", commodity="freshwater", time_origin="year", mode="M1", time="year", year_vtg=n_cool_df_merge["year_vtg"].astype(int), year_act=n_cool_df_merge["year_act"].astype(int), node_loc=n_cool_df_merge["node_loc"], node_origin=n_cool_df_merge["node_dest"], ) # append the input data to results results["input"] = inp_n_cool return results