Source code for message_ix_models.model.transport.passenger

"""Data for passenger transport modes and technologies, excepting LDVs."""

import logging
from collections import defaultdict
from collections.abc import Mapping
from functools import lru_cache, partial
from typing import TYPE_CHECKING

import numpy as np
import pandas as pd
from genno import Computer, Key, KeySeq, Quantity, quote
from message_ix import make_df
from sdmx.model.v21 import Code

from message_ix_models.util import (
    broadcast,
    make_io,
    make_matched_dfs,
    merge_data,
    package_data_path,
    same_node,
    same_time,
)
from message_ix_models.util.genno import Collector

from .key import exo
from .util import has_input_commodity

if TYPE_CHECKING:
    from message_ix_models import Context
    from message_ix_models.types import ParameterData

    from .config import Config

log = logging.getLogger(__name__)


#: Target units for data produced for non-LDV technologies.
#:
#: .. todo: this should be read from general model configuration.
UNITS = dict(
    # Appearing in input file
    inv_cost="GUSD_2010 / (Gv km)",  # Gv km of CAP
    fix_cost="GUSD_2010 / (Gv km)",  # Gv km of CAP
    var_cost="GUSD_2010 / (Gv km)",  # Gv km of ACT
    technical_lifetime="a",
    input="1.0 GWa / (Gv km)",
    output="Gv km",
    capacity_factor="",
)

ENERGY_OTHER_HEADER = """2020 energy demand for OTHER transport

Source: Extracted from IEA EWEB, 2022 OECD edition

Units: TJ
"""

#: Shorthand for tags on keys
Oi = "::O+ixmp"
Pi = "::P+ixmp"

TARGET = "transport::P+ixmp"

collect = Collector(TARGET, "{}::F+ixmp".format)


[docs] def prepare_computer(c: Computer): from .key import n, t_modes, y context: "Context" = c.graph["context"] # Collect data in `TARGET` and connect to the "add transport data" key collect.computer = c c.add("transport_data", __name__, key=TARGET) source = context.transport.data_source.non_LDV log.info(f"non-LDV data from {source}") if source == "IKARUS": collect("ikarus", "transport nonldv::ixmp+ikarus") elif source is None: pass # Don't add any data else: raise ValueError(f"Unknown source for non-LDV data: {source!r}") # Dummy/placeholder data for 2-wheelers (not present in IKARUS) collect("2W", get_2w_dummies, "context") # TODO add these steps within the above, using a utility function # # Compute CO₂ emissions factors # for k in map(Key, list(keys[:-1])): # c.add(k + "input", itemgetter("input"), k) # c.add(k + "emi", ef_for_input, "context", k + "input", species="CO2") # keys.append(k + "emi") # Data for usage pseudo-technologies collect("usage", usage_data, exo.load_factor_nonldv, t_modes, n, y) #### NB lines below duplicated from .transport.base e_iea = Key("energy:n-y-product-flow:iea") e_fnp = KeySeq(e_iea.drop("y")) e = KeySeq("energy:commodity-flow-node_loc:iea") # Transform IEA EWEB data for comparison c.add(e_fnp[0], "select", e_iea, indexers=dict(y=2020), drop=True) c.add(e_fnp[1], "aggregate", e_fnp[0], "groups::iea to transport", keep=False) c.add( e[0], "rename_dims", e_fnp[1], quote(dict(n="node_loc", product="commodity")), sums=True, ) #### c.add(e[1] / "flow", "select", e[0], indexers=dict(flow="OTHER"), drop=True) path = package_data_path("transport", context.regions, "energy-other.csv") kw = dict(header_comment=ENERGY_OTHER_HEADER) c.add("energy other csv", "write_report", e[1] / "flow", path=path, kwargs=kw) # Handle data from the file energy-other.csv # Add minimum activity for transport technologies c.apply(bound_activity_lo) collect("constraints", constraint_data, "t::transport", t_modes, n, y, "config") # Add other constraints on activity of non-LDV technologies bound_activity(c)
[docs] def get_2w_dummies(context) -> "ParameterData": """Generate dummy, equal-cost output for 2-wheeler technologies. **NB** this is analogous to :func:`.ldv.get_dummy`. """ # Information about the target structure config: "Config" = context.transport info = config.base_model_info # List of years to include years = list(filter(lambda y: y >= 2010, info.set["year"])) # List of 2-wheeler technologies all_techs = config.spec.add.set["technology"] techs = list(map(str, all_techs[all_techs.index("2W")].child)) # 'output' parameter values: all 1.0 (ACT units == output units) # - Broadcast across nodes. # - Broadcast across LDV technologies. # - Add commodity ID based on technology ID. output = ( make_df( "output", value=1.0, commodity="transport vehicle 2w", year_act=years, year_vtg=years, unit="Gv * km", level="useful", mode="all", time="year", time_dest="year", ) .pipe(broadcast, node_loc=info.N[1:], technology=techs) .pipe(same_node) ) # Add matching data for 'capacity_factor' and 'var_cost' data = make_matched_dfs(output, capacity_factor=1.0, var_cost=1.0) data["output"] = output return data
[docs] def bound_activity(c: "Computer") -> None: """Constrain activity of non-LDV technologies based on :file:`act-non_ldv.csv`.""" base = exo.act_non_ldv # Produce MESSAGE parameters bound_activity_{lo,up}:nl-t-ya-m-h kw = dict( dims=dict(node_loc="n", technology="t", year_act="y"), common=dict(mode="all", time="year"), ) k_bau = Key(f"bound_activity_up{Pi}") collect(k_bau.name, "as_message_df", base, name=k_bau.name, **kw)
[docs] def bound_activity_lo(c: Computer) -> None: """Set minimum activity for certain technologies to ensure |y0| energy use. Responds to values in :attr:`.Config.minimum_activity`. """ @lru_cache def techs_for(mode: Code, commodity: str) -> list[Code]: """Return techs that are (a) associated with `mode` and (b) use `commodity`.""" result = [] for t in mode.child: if input_info := t.eval_annotation(id="input"): if input_info["commodity"] == commodity: result.append(t.id) return result def _(nodes, technologies, y0, config: dict) -> Quantity: """Quantity with dimensions (c, n, t, y), values from `config`.""" # Extract MESSAGEix-Transport configuration cfg: "Config" = config["transport"] # Construct a set of all (node, technology, commodity) to constrain rows: list[list] = [] cols = ["n", "t", "c", "value"] for (n, modes, c), value in cfg.minimum_activity.items(): for m in ["2W", "BUS", "F ROAD"] if modes == "ROAD" else ["RAIL"]: m_idx = technologies.index(m) rows.extend([n, t, c, value] for t in techs_for(technologies[m_idx], c)) # Assign y and value; convert to Quantity return Quantity( pd.DataFrame(rows, columns=cols) .assign(y=y0) .set_index(cols[:3] + ["y"])["value"], units="GWa", ) k = KeySeq("bound_activity_lo:n-t-y:transport minimum") c.add(next(k), _, "n::ex world", "t::transport", "y0", "config") # Produce MESSAGE parameter bound_activity_lo:nl-t-ya-m-h kw = dict( dims=dict(node_loc="n", technology="t", year_act="y"), common=dict(mode="all", time="year"), ) collect(k.name, "as_message_df", k[0], name=k.name, **kw)
[docs] def constraint_data( t_all, t_modes: list[str], nodes, years: list[int], genno_config: dict ) -> dict[str, pd.DataFrame]: """Return constraints on growth of ACT and CAP_NEW for non-LDV technologies. Responds to the :attr:`.Config.constraint` keys :py:`"non-LDV *"`; see description there. """ config: Config = genno_config["transport"] # Non-LDV passenger modes modes = set(t for t in t_modes if t != "LDV") # Lists of technologies to constrain # All technologies under the non-LDV modes t_0: set[Code] = set(filter(lambda t: t.parent and t.parent.id in modes, t_all)) # Only the technologies that input c=electr t_1: set[Code] = set(filter(partial(has_input_commodity, commodity="electr"), t_0)) # Aviation technologies only t_2: set[Code] = set(filter(lambda t: t.parent and t.parent.id == "AIR", t_all)) # Only the technologies that input c=gas t_3: set[Code] = set(filter(partial(has_input_commodity, commodity="gas"), t_0)) common = dict(year_act=years, year_vtg=years, time="year", unit="-") dfs = defaultdict(list) # Iterate over: # 1. Parameter name # 2. Set of technologies to be constrained. # 3. A fixed value, if any, to be used. for name, techs, fixed_value in ( # These 2 entries set: # - 0 for the t_1 (c=electr) technologies # - The value from config for all others ("growth_activity_lo", list(t_0 - t_1), np.nan), ("growth_activity_lo", list(t_1), 0.0), # This 1 entry sets the value from config for all technologies # ("growth_activity_lo", t_0, np.nan), # This entry sets the value from config for certain technologies ("growth_activity_up", list(t_1 | t_2 | t_3), np.nan), # For this parameter, no differentiation ("growth_new_capacity_up", list(t_0), np.nan), ): # Use the fixed_value, if any, or a value from configuration value = np.nan_to_num(fixed_value, nan=config.constraint[f"non-LDV {name}"]) # Assemble the data dfs[name].append( make_df(name, value=value, **common).pipe( broadcast, node_loc=nodes, technology=techs ) ) # Add initial_* values corresponding to growth_{activity,new_capacity}_up, to # set the starting point of dynamic constraints. if name.endswith("_up"): name_init = name.replace("growth", "initial") value = config.constraint[f"non-LDV {name_init}"] for n, df in make_matched_dfs(dfs[name][-1], **{name_init: value}).items(): dfs[n].append(df) return {k: pd.concat(v) for k, v in dfs.items()}
[docs] def usage_data( load_factor: Quantity, modes: list[Code], nodes: list[str], years: list[int] ) -> Mapping[str, pd.DataFrame]: """Generate data for non-LDV usage "virtual" technologies. These technologies convert commodities like "transport vehicle rail" (i.e. vehicle-distance traveled) into "transport pax rail" (i.e. passenger-distance traveled), through use of a load factor in the ``output`` efficiency. They are "virtual" in the sense they have no cost, lifetime, or other physical properties. """ common = dict(year_vtg=years, year_act=years, mode="all", time="year") data = [] for mode in filter(lambda m: m != "LDV", map(str, modes)): data.append( make_io( src=(f"transport vehicle {mode.lower()}", "useful", "Gv km"), dest=(f"transport pax {mode.lower()}", "useful", "Gp km"), efficiency=load_factor.sel(t=mode.upper()).item(), on="output", technology=f"transport {mode.lower()} usage", # Other data **common, ) ) result: dict[str, pd.DataFrame] = dict() merge_data(result, *data) for k, v in result.items(): result[k] = v.pipe(broadcast, node_loc=nodes).pipe(same_node).pipe(same_time) return result