from collections import defaultdict
from collections.abc import Iterable
import message_ix
import pandas as pd
from message_ix import make_df
# Get endogenous material demand from buildings interface
from message_ix_models import ScenarioInfo
from message_ix_models.model.material.data_util import (
calculate_ini_new_cap,
read_rel,
read_sector_data,
read_timeseries,
)
from message_ix_models.model.material.material_demand import material_demand_calc
from message_ix_models.model.material.util import (
get_ssp_from_context,
maybe_remove_water_tec,
read_config,
remove_from_list_if_exists,
)
from message_ix_models.util import (
broadcast,
nodes_ex_world,
package_data_path,
same_node,
)
def gen_mock_demand_steel(scenario: message_ix.Scenario) -> pd.DataFrame:
s_info = ScenarioInfo(scenario)
nodes = s_info.N
nodes.remove("World")
# The order:
# r = ['R12_AFR', 'R12_RCPA', 'R12_EEU', 'R12_FSU', 'R12_LAM', 'R12_MEA',\
# 'R12_NAM', 'R12_PAO', 'R12_PAS', 'R12_SAS', 'R12_WEU',"R12_CHN"]
# Finished steel demand from:
# https://www.oecd.org/industry/ind/Item_4b_Worldsteel.pdf
# For region definitions:
# https://worldsteel.org/wp-content/uploads/2021-World-Steel-in-Figures.pdf
# For detailed assumptions and calculation see: steel_demand_calculation.xlsx
# under
# https://iiasahub.sharepoint.com/
# sites/eceprog?cid=75ea8244-8757-44f1-83fd-d34f94ffd06a
if "R12_CHN" in nodes:
nodes.remove("R12_GLB")
sheet_n = "data_R12"
region_set = "R12_"
d = [
20.04,
12.08,
56.55,
56.5,
64.94,
54.26,
97.76,
91.3,
65.2,
164.28,
131.95,
980.1,
]
else:
nodes.remove("R11_GLB")
sheet_n = "data_R11"
region_set = "R11_"
d = [
20.04,
992.18,
56.55,
56.5,
64.94,
54.26,
97.76,
91.3,
65.2,
164.28,
131.95,
]
# MEA change from 39 to 9 to make it feasible (coal supply bound)
# SSP2 R11 baseline GDP projection
gdp_growth = pd.read_excel(
package_data_path("material", "other", "iamc_db ENGAGE baseline GDP PPP.xlsx"),
sheet_name=sheet_n,
)
gdp_growth = gdp_growth.loc[
(gdp_growth["Scenario"] == "baseline") & (gdp_growth["Region"] != "World")
].drop(["Model", "Variable", "Unit", "Notes", 2000, 2005], axis=1)
gdp_growth["Region"] = region_set + gdp_growth["Region"]
demand2020_steel = (
pd.DataFrame({"Region": nodes, "Val": d})
.join(gdp_growth.set_index("Region"), on="Region")
.rename(columns={"Region": "node"})
)
demand2020_steel.iloc[:, 3:] = (
demand2020_steel.iloc[:, 3:]
.div(demand2020_steel[2020], axis=0)
.multiply(demand2020_steel["Val"], axis=0)
)
demand2020_steel = pd.melt(
demand2020_steel.drop(["Val", "Scenario"], axis=1),
id_vars=["node"],
var_name="year",
value_name="value",
)
return demand2020_steel
def gen_data_steel_ts(
data_steel_ts: pd.DataFrame, results: dict[str, list], t: str, nodes: list[str]
):
common = dict(
time="year",
time_origin="year",
time_dest="year",
)
param_name = data_steel_ts.loc[
(data_steel_ts["technology"] == t), "parameter"
].unique()
for p in set(param_name):
val = data_steel_ts.loc[
(data_steel_ts["technology"] == t) & (data_steel_ts["parameter"] == p),
"value",
]
# units = data_steel_ts.loc[
# (data_steel_ts["technology"] == t)
# & (data_steel_ts["parameter"] == p),
# "units",
# ].values[0]
mod = data_steel_ts.loc[
(data_steel_ts["technology"] == t) & (data_steel_ts["parameter"] == p),
"mode",
]
yr = data_steel_ts.loc[
(data_steel_ts["technology"] == t) & (data_steel_ts["parameter"] == p),
"year",
]
if p == "var_cost":
df = make_df(
p,
technology=t,
value=val,
unit="t",
year_vtg=yr,
year_act=yr,
mode=mod,
**common,
).pipe(broadcast, node_loc=nodes)
if p == "output":
comm = data_steel_ts.loc[
(data_steel_ts["technology"] == t) & (data_steel_ts["parameter"] == p),
"commodity",
]
lev = data_steel_ts.loc[
(data_steel_ts["technology"] == t) & (data_steel_ts["parameter"] == p),
"level",
]
rg = data_steel_ts.loc[
(data_steel_ts["technology"] == t) & (data_steel_ts["parameter"] == p),
"region",
]
df = make_df(
p,
technology=t,
value=val,
unit="t",
year_vtg=yr,
year_act=yr,
mode=mod,
node_loc=rg,
node_dest=rg,
commodity=comm,
level=lev,
**common,
)
else:
rg = data_steel_ts.loc[
(data_steel_ts["technology"] == t) & (data_steel_ts["parameter"] == p),
"region",
]
df = make_df(
p,
technology=t,
value=val,
unit="t",
year_vtg=yr,
year_act=yr,
mode=mod,
node_loc=rg,
**common,
)
results[p].append(df)
return
def get_data_steel_const(
data_steel: pd.DataFrame,
results: dict[str, list],
params: Iterable,
t: str,
yv_ya: pd.DataFrame,
nodes: list[str],
global_region: str,
):
for par in params:
# Obtain the parameter names, commodity,level,emission
split = par.split("|")
param_name = split[0]
# Obtain the scalar value for the parameter
val = data_steel.loc[
((data_steel["technology"] == t) & (data_steel["parameter"] == par)),
"value",
] # .values
regions = data_steel.loc[
((data_steel["technology"] == t) & (data_steel["parameter"] == par)),
"region",
] # .values
common = dict(
year_vtg=yv_ya.year_vtg,
year_act=yv_ya.year_act,
# mode="M1",
time="year",
time_origin="year",
time_dest="year",
)
for rg in regions:
# For the parameters which inlcudes index names
if len(split) > 1:
if (param_name == "input") | (param_name == "output"):
# Assign commodity and level names
com = split[1]
lev = split[2]
mod = split[3]
if (param_name == "input") and (lev == "import"):
df = make_df(
param_name,
technology=t,
commodity=com,
level=lev,
value=val[regions[regions == rg].index[0]],
mode=mod,
unit="t",
node_loc=rg,
node_origin=global_region,
**common,
)
elif (param_name == "output") and (lev == "export"):
df = make_df(
param_name,
technology=t,
commodity=com,
level=lev,
value=val[regions[regions == rg].index[0]],
mode=mod,
unit="t",
node_loc=rg,
node_dest=global_region,
**common,
)
else:
df = make_df(
param_name,
technology=t,
commodity=com,
level=lev,
value=val[regions[regions == rg].index[0]],
mode=mod,
unit="t",
node_loc=rg,
**common,
).pipe(same_node)
# Copy parameters to all regions, when node_loc is not GLB
if (len(regions) == 1) and (rg != global_region):
df["node_loc"] = None
df = df.pipe(broadcast, node_loc=nodes)
# Use same_node only for non-trade technologies
if (lev != "import") and (lev != "export"):
df = df.pipe(same_node)
elif param_name == "emission_factor":
# Assign the emisson type
emi = split[1]
mod = split[2]
df = make_df(
param_name,
technology=t,
value=val[regions[regions == rg].index[0]],
emission=emi,
mode=mod,
unit="t",
node_loc=rg,
**common,
)
else: # time-independent var_cost
mod = split[1]
df = make_df(
param_name,
technology=t,
value=val[regions[regions == rg].index[0]],
mode=mod,
unit="t",
node_loc=rg,
**common,
)
# Parameters with only parameter name
else:
df = make_df(
param_name,
technology=t,
value=val[regions[regions == rg].index[0]],
unit="t",
node_loc=rg,
**common,
)
# Copy parameters to all regions
if (
len(set(df["node_loc"])) == 1
and list(set(df["node_loc"]))[0] != global_region
):
df["node_loc"] = None
df = df.pipe(broadcast, node_loc=nodes)
results[param_name].append(df)
return
def gen_data_steel_rel(data_steel_rel, results, regions, modelyears):
for reg in regions:
for r in data_steel_rel["relation"].unique():
model_years_rel = modelyears.copy()
if r is None:
break
if r == "max_global_recycling_steel":
continue
if r in ["minimum_recycling_steel", "max_regional_recycling_steel"]:
# Do not implement the minimum recycling rate for the year 2020
remove_from_list_if_exists(2020, model_years_rel)
params = set(
data_steel_rel.loc[
(data_steel_rel["relation"] == r), "parameter"
].values
)
common_rel = dict(
year_rel=model_years_rel,
year_act=model_years_rel,
mode="M1",
relation=r,
)
for par_name in params:
if par_name == "relation_activity":
tec_list = data_steel_rel.loc[
(
(data_steel_rel["relation"] == r)
& (data_steel_rel["parameter"] == par_name)
),
"technology",
]
for tec in tec_list.unique():
val = data_steel_rel.loc[
(
(data_steel_rel["relation"] == r)
& (data_steel_rel["parameter"] == par_name)
& (data_steel_rel["technology"] == tec)
& (data_steel_rel["Region"] == reg)
),
"value",
].values[0]
df = make_df(
par_name,
technology=tec,
value=val,
unit="-",
node_loc=reg,
node_rel=reg,
**common_rel,
).pipe(same_node)
results[par_name].append(df)
elif (par_name == "relation_upper") | (par_name == "relation_lower"):
val = data_steel_rel.loc[
(
(data_steel_rel["relation"] == r)
& (data_steel_rel["parameter"] == par_name)
& (data_steel_rel["Region"] == reg)
),
"value",
].values[0]
df = make_df(
par_name, value=val, unit="-", node_rel=reg, **common_rel
)
results[par_name].append(df)
return
[docs]def gen_data_steel(scenario: message_ix.Scenario, dry_run: bool = False):
"""Generate data for materials representation of steel industry."""
# Load configuration
context = read_config()
config = context["material"]["steel"]
ssp = get_ssp_from_context(context)
# Information about scenario, e.g. node, year
s_info = ScenarioInfo(scenario)
# Techno-economic assumptions
# TEMP: now add cement sector as well
# => Need to separate those since now I have get_data_steel and cement
data_steel = read_sector_data(scenario, "steel", "Global_steel_MESSAGE.xlsx")
# Special treatment for time-dependent Parameters
data_steel_ts = read_timeseries(scenario, "steel", "Global_steel_MESSAGE.xlsx")
data_steel_rel = read_rel(scenario, "steel", "Global_steel_MESSAGE.xlsx")
tec_ts = set(data_steel_ts.technology) # set of tecs with var_cost
# List of data frames, to be concatenated together at end
results = defaultdict(list)
modelyears = s_info.Y # s_info.Y is only for modeling years
nodes = nodes_ex_world(s_info.N)
global_region = [i for i in s_info.N if i.endswith("_GLB")][0]
yv_ya = s_info.yv_ya
yv_ya = yv_ya.loc[yv_ya.year_vtg >= 1990]
# For each technology there are differnet input and output combinations
# Iterate over technologies
for t in config["technology"]["add"]:
t = t.id
params = data_steel.loc[(data_steel["technology"] == t), "parameter"].unique()
# Special treatment for time-varying params
if t in tec_ts:
gen_data_steel_ts(data_steel_ts, results, t, nodes)
# Iterate over parameters
get_data_steel_const(
data_steel, results, params, t, yv_ya, nodes, global_region
)
# Add relation for the maximum global scrap use in 2020
df_max_recycling = pd.DataFrame(
{
"relation": "max_global_recycling_steel",
"node_rel": "R12_GLB",
"year_rel": 2020,
"year_act": 2020,
"node_loc": nodes,
"technology": "scrap_recovery_steel",
"mode": "M1",
"unit": "???",
"value": data_steel_rel.loc[
(
(data_steel_rel["relation"] == "max_global_recycling_steel")
& (data_steel_rel["parameter"] == "relation_activity")
),
"value",
].values[0],
}
)
df_max_recycling_upper = pd.DataFrame(
{
"relation": "max_global_recycling_steel",
"node_rel": "R12_GLB",
"year_rel": 2020,
"unit": "???",
"value": data_steel_rel.loc[
(
(data_steel_rel["relation"] == "max_global_recycling_steel")
& (data_steel_rel["parameter"] == "relation_upper")
),
"value",
].values[0],
},
index=[0],
)
df_max_recycling_lower = pd.DataFrame(
{
"relation": "max_global_recycling_steel",
"node_rel": "R12_GLB",
"year_rel": 2020,
"unit": "???",
"value": data_steel_rel.loc[
(
(data_steel_rel["relation"] == "max_global_recycling_steel")
& (data_steel_rel["parameter"] == "relation_lower")
),
"value",
].values[0],
},
index=[0],
)
results["relation_activity"].append(df_max_recycling)
results["relation_upper"].append(df_max_recycling_upper)
results["relation_lower"].append(df_max_recycling_lower)
# Add relations for scrap grades and availability
regions = set(data_steel_rel["Region"].values)
gen_data_steel_rel(data_steel_rel, results, regions, modelyears)
# Create external demand param
parname = "demand"
df_demand = material_demand_calc.derive_demand("steel", scenario, ssp=ssp)
results[parname].append(df_demand)
common = dict(
year_vtg=yv_ya.year_vtg,
year_act=yv_ya.year_act,
time="year",
time_origin="year",
time_dest="year",
)
# Add CCS as addon
parname = "addon_conversion"
bf_tec = ["bf_steel"]
df = make_df(
parname, mode="M2", type_addon="bf_ccs_steel_addon", value=1, unit="-", **common
).pipe(broadcast, node=nodes, technology=bf_tec)
results[parname].append(df)
dri_gas_tec = ["dri_gas_steel"]
df = make_df(
parname,
mode="M1",
type_addon="dri_gas_ccs_steel_addon",
value=1,
unit="-",
**common,
).pipe(broadcast, node=nodes, technology=dri_gas_tec)
results[parname].append(df)
dri_tec = ["dri_steel"]
df = make_df(
parname, mode="M1", type_addon="dri_steel_addon", value=1, unit="-", **common
).pipe(broadcast, node=nodes, technology=dri_tec)
results[parname].append(df)
# Concatenate to one data frame per parameter
results = {par_name: pd.concat(dfs) for par_name, dfs in results.items()}
results["initial_new_capacity_up"] = pd.concat(
[
calculate_ini_new_cap(
df_demand=df_demand.copy(deep=True),
technology="dri_gas_ccs_steel",
material="steel",
),
calculate_ini_new_cap(
df_demand=df_demand.copy(deep=True),
technology="bf_ccs_steel",
material="steel",
),
]
)
maybe_remove_water_tec(scenario, results)
return results