from collections import defaultdict
import pandas as pd
from message_ix import Scenario, make_df
import message_ix_models.util
from message_ix_models import ScenarioInfo
from message_ix_models.util import (
broadcast,
nodes_ex_world,
same_node,
)
from .data_util import read_timeseries
from .util import read_config
[docs]
def read_data_generic(scenario: Scenario) -> (pd.DataFrame, pd.DataFrame):
"""Read and clean data from :file:`generic_furnace_boiler_techno_economic.xlsx`."""
# Read the file
data_generic = pd.read_excel(
message_ix_models.util.package_data_path(
"material", "other", "generic_furnace_boiler_techno_economic.xlsx"
),
sheet_name="generic",
)
# Clean the data
# Drop columns that don't contain useful information
data_generic = data_generic.drop(["Region", "Source", "Description"], axis=1)
data_generic_ts = read_timeseries(
scenario, "other", "generic_furnace_boiler_techno_economic.xlsx"
)
# Unit conversion
# At the moment this is done in the excel file, can be also done here
# To make sure we use the same units
return data_generic, data_generic_ts
def gen_data_generic(
scenario: Scenario, dry_run: bool = False
) -> dict[str, pd.DataFrame]:
# Load configuration
config = read_config()["material"]["generic"]
# Information about scenario, e.g. node, year
s_info = ScenarioInfo(scenario)
# Techno-economic assumptions
data_generic, data_generic_ts = read_data_generic(scenario)
# List of data frames, to be concatenated together at end
results = defaultdict(list)
# For each technology there are differnet input and output combinations
# Iterate over technologies
modelyears = s_info.Y # s_info.Y is only for modeling years
yv_ya = s_info.yv_ya
# Do not parametrize GLB region the same way
nodes = nodes_ex_world(s_info.N)
global_region = [i for i in s_info.N if i.endswith("_GLB")][0]
for t in config["technology"]["add"]:
t = t.id
# years = s_info.Y
params = data_generic.loc[
(data_generic["technology"] == t), "parameter"
].values.tolist()
# Availability year of the technology
av = data_generic.loc[(data_generic["technology"] == t), "availability"].values[
0
]
modelyears = [year for year in modelyears if year >= av]
yva = yv_ya.loc[yv_ya.year_vtg >= av,]
# Iterate over parameters
for par in params:
split = par.split("|")
param_name = split[0]
val = data_generic.loc[
(
(data_generic["technology"] == t)
& (data_generic["parameter"] == par)
),
"value",
].values[0]
# Common parameters for all input and output tables
# year_act is none at the moment
# node_dest and node_origin are the same as node_loc
common = dict(
year_vtg=yva.year_vtg,
year_act=yva.year_act,
time="year",
time_origin="year",
time_dest="year",
)
if len(split) > 1:
if (param_name == "input") | (param_name == "output"):
com = split[1]
lev = split[2]
mod = split[3]
df = (
make_df(
param_name,
technology=t,
commodity=com,
level=lev,
mode=mod,
value=val,
unit="t",
**common,
)
.pipe(broadcast, node_loc=nodes)
.pipe(same_node)
)
results[param_name].append(df)
elif param_name == "emission_factor":
emi = split[1]
# TODO: Now tentatively fixed to one mode.
# Have values for the other mode too
df_low = make_df(
param_name,
technology=t,
value=val,
emission=emi,
mode="low_temp",
unit="t",
**common,
).pipe(broadcast, node_loc=nodes)
df_high = make_df(
param_name,
technology=t,
value=val,
emission=emi,
mode="high_temp",
unit="t",
**common,
).pipe(broadcast, node_loc=nodes)
results[param_name].append(df_low)
results[param_name].append(df_high)
# Rest of the parameters apart from input, output and emission_factor
else:
df = make_df(
param_name, technology=t, value=val, unit="t", **common
).pipe(broadcast, node_loc=nodes)
results[param_name].append(df)
# Special treatment for time-varying params
tec_ts = set(data_generic_ts.technology) # set of tecs in timeseries sheet
for t in tec_ts:
common = dict(
time="year",
time_origin="year",
time_dest="year",
)
param_name = data_generic_ts.loc[
(data_generic_ts["technology"] == t), "parameter"
]
for p in set(param_name):
val = data_generic_ts.loc[
(data_generic_ts["technology"] == t)
& (data_generic_ts["parameter"] == p),
"value",
]
regions = data_generic_ts.loc[
(
(data_generic_ts["technology"] == t)
& (data_generic_ts["parameter"] == p)
),
"region",
]
# units = data_generic_ts.loc[
# (data_generic_ts["technology"] == t)
# & (data_generic_ts["parameter"] == p),
# "units",
# ].values[0]
mod = data_generic_ts.loc[
(data_generic_ts["technology"] == t)
& (data_generic_ts["parameter"] == p),
"mode",
]
yr = data_generic_ts.loc[
(data_generic_ts["technology"] == t)
& (data_generic_ts["parameter"] == p),
"year",
]
if p == "var_cost":
df = make_df(
p,
technology=t,
value=val,
unit="t",
year_vtg=yr,
year_act=yr,
mode=mod,
**common,
).pipe(broadcast, node_loc=nodes)
else:
rg = data_generic_ts.loc[
(data_generic_ts["technology"] == t)
& (data_generic_ts["parameter"] == p),
"region",
]
df = make_df(
p,
technology=t,
value=val,
unit="t",
year_vtg=yr,
year_act=yr,
mode=mod,
node_loc=rg,
**common,
)
# Copy parameters to all regions
if (
(len(set(regions)) == 1)
and len(set(df["node_loc"])) == 1
and list(set(df["node_loc"]))[0] != global_region
):
df["node_loc"] = None
df = df.pipe(broadcast, node_loc=nodes)
results[p].append(df)
results = {par_name: pd.concat(dfs) for par_name, dfs in results.items()}
return results