"""Tools for calibrating MACRO for MESSAGEix-GLOBIOM.
See :doc:`message-ix:macro` for *general* documentation on MACRO and MESSAGE-MACRO. This
module contains tools specifically for using these models with MESSAGEix-GLOBIOM.
"""
import logging
from collections.abc import Mapping
from functools import lru_cache
from itertools import product
from pathlib import Path
from typing import TYPE_CHECKING, Literal, Optional, Union
import pandas as pd
from message_ix_models.model.bare import get_spec
from message_ix_models.util import nodes_ex_world
if TYPE_CHECKING:
from sdmx.model.v21 import Code
from message_ix_models import Context
log = logging.getLogger(__name__)
#: Default set of commodities to include in :func:`generate`.
COMMODITY = ["i_therm", "i_spec", "rc_spec", "rc_therm", "transport"]
[docs]def generate(
parameter: Literal["aeei", "config", "depr", "drate", "lotol"],
context: "Context",
commodities: Union[list[str], list["Code"]] = COMMODITY,
value: Optional[float] = None,
) -> pd.DataFrame:
"""Generate uniform data for one :mod:`message_ix.macro` `parameter`.
:meth:`message_ix.Scenario.add_macro` expects as its `data` parameter a
:class:`dict` that maps certain MACRO parameter names (or the special name "config")
to :class:`.pandas.DataFrame`. This function generates data for those data frames.
For the particular dimensions, generate automatically includes:
- "node": All nodes in the node code list given by :func:`.nodes_ex_world`, for the
node list indicated by :attr:`.model.Config.regions`.
- "year": All periods from the period *before* the first model year.
- "commodity": The elements of `commodities`.
- "sector": If each entry of `commodities` is a :class:`.Code` and has an annotation
with id="macro-sector", the value of that annotation. Otherwise, the same as
`commodity`.
`value` supplies the parameter value, which is the same for all observations.
The labels level="useful" and unit="-" are fixed.
Parameters
----------
parameter : str
MACRO parameter for which to generate data.
context
Used with :func:`.bare.get_spec`.
commodities : list of str or .Code
Commodities to include in the MESSAGE-MACRO linkage.
value : float
Parameter value.
Returns
-------
pandas.DataFrame
The columns vary according to `parameter`:
- "aeei": node, sector, year, value, unit.
- "depr", "drate", or "lotol": node, value, unit.
- "config": node, sector, commodity, level, year.
"""
spec = get_spec(context)
if isinstance(commodities[0], str):
c_codes = spec.add.set["commodity"]
else:
c_codes = commodities
@lru_cache
def _sector(commodity: str) -> str:
try:
idx = c_codes.index(commodity)
return str(c_codes[idx].get_annotation(id="macro-sector").text)
except (KeyError, ValueError) as e:
log.info(e)
return str(commodity)
# AEEI data must begin from the period before the first model period
y0_index = spec.add.set["year"].index(spec.add.y0)
iterables = dict(
c_s=zip( # Paired commodity and sector
map(str, commodities), map(_sector, commodities)
),
level=["useful"],
node=nodes_ex_world(spec.add.N),
sector=map(_sector, commodities),
year=spec.add.set["year"][y0_index:],
)
if parameter == "aeei":
dims = ["node", "year", "sector"]
iterables.update(year=spec.add.set["year"][y0_index - 1 :])
elif parameter == "config":
dims = ["node", "c_s", "level", "year"]
assert value is None
elif parameter in ("depr", "drate", "lotol"):
dims = ["node"]
else:
raise NotImplementedError(f"generate(…) for MACRO parameter {parameter!r}")
result = pd.DataFrame(
[tuple(values) for values in product(*[iterables[d] for d in dims])],
columns=dims,
)
if parameter == "config":
return pd.concat(
[
result.drop("c_s", axis=1),
pd.DataFrame(result["c_s"].tolist(), columns=["commodity", "sector"]),
],
axis=1,
)
else:
return result.assign(value=value, unit="-")
[docs]def load(base_path: Path) -> Mapping[str, pd.DataFrame]:
"""Load MACRO data from CSV files.
The function reads files in the simple/long CSV format understood by
:func:`.genno.operator.load_file`. For use with
:meth:`~message_ix.Scenario.add_macro`, the dimension names should be given in full,
for instance "node" or "sector".
Parameters
----------
base_path : pathlib.Path
Directory containing zero or more CSV files.
Returns
-------
dict of (str -> pandas.DataFrame)
Mapping from MACRO calibration parameter names to data; one entry for each file
in `base_path`.
"""
from genno.operator import load_file
result = {}
for filename in base_path.glob("*.csv"):
name = filename.stem
q = load_file(filename, name=name)
result[name] = (
q.to_frame()
.reset_index()
.rename(columns={name: "value"})
.assign(unit=f"{q.units:~}" or "-")
)
return result