""":mod:`genno` operators for MESSAGEix-Transport."""
import logging
import re
from functools import partial, reduce
from itertools import product
from operator import gt, le, lt
from typing import (
TYPE_CHECKING,
Any,
Dict,
Hashable,
List,
Mapping,
Optional,
Sequence,
Set,
Tuple,
cast,
)
import genno
import numpy as np
import pandas as pd
import xarray as xr
from genno import Computer, KeySeq, Operator, quote
from genno.operator import apply_units, rename_dims
from genno.testing import assert_qty_allclose, assert_units
from sdmx.model.v21 import Code
from message_ix_models import ScenarioInfo
from message_ix_models.model.structure import get_codelist, get_codes
from message_ix_models.project.navigate import T35_POLICY
from message_ix_models.report.operator import compound_growth
from message_ix_models.report.util import as_quantity
from message_ix_models.util import (
MappingAdapter,
broadcast,
datetime_now_with_tz,
nodes_ex_world,
show_versions,
)
from .config import Config
if TYPE_CHECKING:
from genno.types import AnyQuantity
from message_ix import Scenario
from xarray.core.types import Dims
import message_ix_models.model.transport.factor
from message_ix_models import Context
log = logging.getLogger(__name__)
__all__ = [
"base_model_data_header",
"base_shares",
"broadcast_advance",
"broadcast_y_yv_ya",
"cost",
"distance_ldv",
"distance_nonldv",
"dummy_prices",
"extend_y",
"factor_fv",
"factor_input",
"factor_pdt",
"groups_iea_eweb",
"iea_eei_fv",
"indexers_n_cd",
"indexers_usage",
"input_commodity_level",
"logit",
"max",
"min",
"merge_data",
"nodes_ex_world", # Re-export from message_ix_models.util TODO do this upstream
"nodes_world_agg",
"price_units",
"quantity_from_config",
"relabel2",
"share_weight",
"smooth",
"transport_check",
"transport_data",
"votm",
]
[docs]def base_shares(
base: "AnyQuantity", nodes: List[str], techs: List[str], y: List[int]
) -> "AnyQuantity":
"""Return base mode shares.
The mode shares are read from a file at
:file:`data/transport/{regions}/mode-shares/{name}.csv`, where `name` is from the
configuration key ``mode-share:``, and `region` uses :func:`.path_fallback`.
Labels on the t (technology) dimension must match the ``demand modes:`` from the
configuration.
If the data lack the n (node, spatial) and/or y (time) dimensions, they are
broadcast over these.
"""
from genno.operator import aggregate, sum
from numpy import allclose
# Check: ensure values sum to 1
tmp = sum(base, dimensions=["t"])
check = allclose(tmp.to_series().values, 1.0)
if not check:
log.warning(
"Sum across modes ≠ 1.0; will rescale:\n" + (tmp[tmp != 1.0].to_string())
)
result = base / tmp
else:
result = base
assert allclose(sum(result, dimensions=["t"]).to_series().values, 1.0)
# Aggregate extra modes that do not appear in the data
extra_modes = set(result.coords["t"].data) - set(techs)
if extra_modes == {"OTHER ROAD"}:
# Add "OTHER ROAD" to "LDV"
groups = {t: [t] for t in techs}
groups["LDV"].append("OTHER ROAD")
result = aggregate(result, groups=dict(t=groups), keep=False)
elif len(extra_modes):
raise NotImplementedError(f"Extra mode(s) t={extra_modes}")
missing = cast(Set[Hashable], set("nty")) - set(result.dims)
if len(missing):
log.info(f"Broadcast base mode shares with dims {base.dims} over {missing}")
coords = [("n", nodes), ("t", techs), ("y", y)]
result = base * genno.Quantity(xr.DataArray(1.0, coords=coords), units="")
return result
[docs]def broadcast_advance(data: "AnyQuantity", y0: int, config: dict) -> "AnyQuantity":
"""Broadcast ADVANCE `data` from native `n` coords to :py:`config["regions"]`."""
from genno.operator import sum
assert "R12" == config["regions"], "ADVANCE data mapping only for R12 regions"
# Create a quantity for broadcasting
df = pd.DataFrame(
[
["ASIA", 0.1, "R12_RCPA"],
["ASIA", 0.5 - 0.1, "R12_PAS"],
["CHN", 1.0, "R12_CHN"],
["EU", 0.1, "R12_EEU"],
["EU", 0.9, "R12_WEU"],
["IND", 1.0, "R12_SAS"],
["LAM", 1.0, "R12_LAM"],
["MAF", 0.5, "R12_AFR"],
["MAF", 0.5, "R12_MEA"],
["OECD90", 0.08, "R12_PAO"],
["REF", 1.0, "R12_FSU"],
["USA", 1.0, "R12_NAM"],
],
columns=["n", "value", "n_new"],
)
bcast = genno.Quantity(df.set_index(["n", "n_new"])["value"])
check = data.sel(n="World", y=y0, drop=True)
# - Multiply by `bcast`, adding a new dimension "n_new".
# - Sum on "n" and drop that dimension.
# - Rename "n_new" to "n".
result = (
(data.sel(y=y0, drop=True) * bcast)
.pipe(sum, dimensions=["n"])
.pipe(rename_dims, {"n_new": "n"})
)
# Ensure the total across the new `n` coords still matches the world total
assert_qty_allclose(check, sum(result, dimensions=["n"]), rtol=5e-2)
return result
[docs]def broadcast_y_yv_ya(y: List[int], y_model: List[int]) -> "AnyQuantity":
"""Return a quantity for broadcasting y to (yv, ya).
This is distinct from :attr:`.ScenarioInfo.ya_ya`, because it omits all
:math:`y^V < y_0`.
"""
dims = ["y", "yv", "ya"]
series = (
pd.DataFrame(product(y, y_model), columns=dims[1:])
.query("ya >= yv")
.assign(value=1.0, y=lambda df: df["yv"])
.set_index(dims)["value"]
)
return genno.Quantity(series)
[docs]def cost(
price: "AnyQuantity",
gdp_ppp_cap: "AnyQuantity",
whours: "AnyQuantity",
speeds: "AnyQuantity",
votm: "AnyQuantity",
y: List[int],
) -> "AnyQuantity":
"""Calculate cost of transport [money / distance].
Calculated from two components:
1. The inherent price of the mode.
2. Value of time, in turn from:
1. a value of time multiplier (`votm`),
2. the wage rate per hour (`gdp_ppp_cap` / `whours`), and
3. the travel time per unit distance (1 / `speeds`).
"""
from genno.operator import add
# NB for some reason, the 'y' dimension of result becomes `float`, rather than
# `int`, in this step
# FIXME genno does not handle units here correctly using "+" instead of add()
return add(price, (gdp_ppp_cap * votm) / (speeds * whours)).sel(y=y)
[docs]def distance_ldv(config: dict) -> "AnyQuantity":
"""Return annual driving distance per LDV.
- Regions other than R11_NAM have M/F values in same proportion to their A value as
in NAM
"""
# Load from config.yaml
result = as_quantity(config["transport"].ldv_activity) * as_quantity(
config["transport"].factor["activity"]["ldv"]
)
result.name = "ldv distance"
return result
#: Mapping from technology names appearing in the IEA EEI data to those in
#: MESSAGEix-Transport.
EEI_TECH_MAP = {
"Buses": "BUS",
"Cars/light trucks": "LDV",
"Freight trains": "freight rail",
"Freight trucks": "freight truck",
"Motorcycles": "2W",
"Passenger trains": "RAIL",
}
[docs]def distance_nonldv(context: "Context") -> "AnyQuantity":
"""Return annual travel distance per vehicle for non-LDV transport modes."""
# FIXME Remove this type exclusion; added only to merge #549
import message_ix_models.tools.iea.eei # type: ignore # noqa: F401
from message_ix_models.tools import exo_data
log.warning(
"distance_nonldv() currently returns a sum, rather than weighted average. Use"
"with caution."
)
c = Computer()
source_kw = dict(measure="Vehicle use", aggregate=True)
keys = exo_data.prepare_computer(context, c, "IEA EEI", source_kw)
ks = KeySeq(keys[0])
c.add(ks[0], "select", ks.base, indexers={"SECTOR": "transport"}, drop=True)
c.add(ks[1], "rename", ks[0], quote({"Mode/vehicle type": "t"}))
# Replace IEA EEI technology codes with MESSAGEix-Transport ones
c.add(ks[2], "relabel", ks[1], labels=dict(t=EEI_TECH_MAP))
# Ensure compatible dimensionality and convert units
c.add(ks[3], "convert_units", ks[2], units="Mm / vehicle / year")
c.add(ks[4], "rename_dims", ks[3], quote({"n": "nl"}))
# Execute the calculation
result = c.get(ks[4])
# Select the latest year.
# TODO check whether coverage varies by year; if so, then fill-forward or
# extrapolate
y_m1 = result.coords["y"].data[-1]
log.info(f"Return data for y={y_m1}")
return result.sel(y=y_m1, drop=True)
[docs]def dummy_prices(gdp: "AnyQuantity") -> "AnyQuantity":
# Commodity prices: all equal to 0.1
# Same coords/shape as `gdp`, but with c="transport"
coords = [(dim, item.data) for dim, item in gdp.coords.items()]
coords.append(("c", ["transport"]))
shape = list(len(c[1]) for c in coords)
return genno.Quantity(
xr.DataArray(np.full(shape, 0.1), coords=coords), units="USD / km"
)
[docs]def extend_y(qty: "AnyQuantity", y: List[int]) -> "AnyQuantity":
"""Extend `qty` along the "y" dimension to cover `y`."""
y_ = set(y)
# Subset of `y` appearing in `qty`
y_qty = sorted(set(qty.to_series().reset_index()["y"].unique()) & y_)
# Subset of `target_years` to fill forward from the last period in `qty`
y_to_fill = sorted(filter(partial(lt, y_qty[-1]), y_))
log.info(f"{qty.name}: extend from {y_qty[-1]} → {y_to_fill}")
# Map existing labels to themselves, and missing labels to the last existing one
y_map = [(y, y) for y in y_qty] + [(y_qty[-1], y) for y in y_to_fill]
# - Forward-fill *within* `qty` existing values.
# - Use message_ix_models MappingAdapter to do the rest.
return MappingAdapter({"y": y_map})(qty.ffill("y")) # type: ignore [attr-defined]
[docs]def factor_fv(n: List[str], y: List[int], config: dict) -> "AnyQuantity":
"""Scaling factor for freight activity.
If :attr:`.Config.project` is :data:`ScenarioFlags.ACT`, the value declines from
1.0 at the first `y` to 0.865 (reduction of 13.5%) at y=2050, then constant
thereafter.
Otherwise, the value is 1.0 for every (`n`, `y`).
"""
# Empty data frame
df = pd.DataFrame(columns=["value"], index=pd.Index(y, name="y"))
# Default value
df.iloc[0, :] = 1.0
# NAVIGATE T3.5 "act" demand-side scenario
if T35_POLICY.ACT & config["transport"].project["navigate"]:
years = list(filter(lambda y: y <= 2050, y))
df.loc[years, "value"] = np.interp(years, [y[0], 2050], [1.0, 0.865])
# - Fill all values forward from the latest.
# - Convert to long format.
# - Broadcast over all nodes `n`.
# - Set dimensions as index.
return genno.Quantity(
df.infer_objects()
.ffill()
.reset_index()
.assign(n=None)
.pipe(broadcast, n=n)
.set_index(["n", "y"])["value"],
units="",
)
[docs]def factor_pdt(n: List[str], y: List[int], t: List[str], config: dict) -> "AnyQuantity":
"""Scaling factor for passenger activity.
When :attr:`.Config.scenarios` includes :attr:`ScenarioFlags.ACT` (i.e. NAVIGATE
Task 3.5, demand-side scenario "act"), the value of 0.8 is specified for LDV, 2050,
and all regions. This function implements this as a linear decrease between the
first model period (currently 2020) and that point.
Otherwise, the value is 1.0 for every (`n`, `t`, `y`).
"""
# Empty data frame
df = pd.DataFrame(columns=t, index=pd.Index(y, name="y"))
# Set 1.0 (no scaling) for first period
df.iloc[0, :] = 1.0
# Handle particular scenarios
if T35_POLICY.ACT & config["transport"].project["navigate"]:
# NAVIGATE T3.5 "act" demand-side scenario
years = list(filter(lambda y: y <= 2050, y))
df.loc[years, "LDV"] = np.interp(years, [y[0], 2050], [1.0, 0.8])
# - Fill all values forward from the latest.
# - Convert to long format.
# - Broadcast over all nodes `n`.
# - Set dimensions as index.
return genno.Quantity(
df.infer_objects()
.ffill()
.reset_index()
.melt(id_vars="y", var_name="t")
.assign(n=None)
.pipe(broadcast, n=n)
.set_index(["n", "y", "t"])["value"],
units="",
)
[docs]def factor_ssp(
config: dict,
nodes: List[str],
years: List[int],
*others: List,
info: "message_ix_models.model.transport.factor.Factor",
extra_dims: Optional[Sequence[str]] = None,
) -> "AnyQuantity":
"""Return a scaling factor for an SSP realization."""
kw = dict(n=nodes, y=years, scenario=config["transport"].ssp)
for dim, labels in zip(extra_dims or (), others):
kw[dim] = labels
return info.quantify(**kw)
Groups = Dict[str, Dict[str, List[str]]]
[docs]def groups_iea_eweb(technologies: List[Code]) -> Tuple[Groups, Groups, Dict]:
"""Structure for calibration to IEA Extended World Energy Balances (EWEB).
Returns 3 sets of groups:
1. Groups for aggregating the EWEB data. In particular:
- Labels for IEA ``product`` are aggregated to labels for MESSAGEix-Transport
``commodity``.
- Labels for IEA ``flow`` are selected 1:1 *and* aggregated to a flow named
"transport".
2. Groups for aggregating MESSAGEix-Transport data. In particular:
- Labels for MESSAGEix-Transport transport modes (|t| dimension) are aggregated
to labels for IEA ``flow``.
3. Indexers for *dis* aggregating computed scaling factors; that is, reversing (2).
"""
g0: Groups = dict(flow={}, product={})
g1: Groups = dict(t={})
g2: Dict = dict(t=[], t_new=[])
# Add groups from base model commodity code list:
# - IEA product list → MESSAGE commodity (e.g. "lightoil")
# - IEA flow list → MESSAGE technology group (e.g. "transport")
for c in get_codelist("commodity"):
if products := c.eval_annotation(id="iea-eweb-product"):
g0["product"][c.id] = products
if flows := c.eval_annotation(id="iea-eweb-flow"):
g0["flow"][c.id] = flows
# Add groups from MESSAGEix-Transport technology code list
for t in technologies:
if flows := t.eval_annotation(id="iea-eweb-flow"):
target = flows[0] if len(flows) == 1 else t.id
g0["flow"][target] = flows
# Append the mode name, for instance "AIR"
g1["t"].setdefault(target, []).append(t.id)
# # Append the name of individual technologies for this mode
# g1["t"][target].extend(map(lambda c: c.id, t.child))
g2["t"].append(target)
g2["t_new"].append(t.id)
g2["t"] = xr.DataArray(g2.pop("t"), coords=[("t_new", g2.pop("t_new"))])
return g0, g1, g2
[docs]def logit(
x: "AnyQuantity", k: "AnyQuantity", lamda: "AnyQuantity", y: List[int], dim: str
) -> "AnyQuantity":
r"""Compute probabilities for a logit random utility model.
The choice probabilities have the form:
.. math::
Pr(i) = \frac{k_j x_j ^{\lambda_j}}
{\sum_{\forall i \in D} k_i x_i ^{\lambda_i}}
\forall j \in D
…where :math:`D` is the dimension named by the `dim` argument. All other dimensions
are broadcast automatically.
"""
# Systematic utility
u = (k * x**lamda).sel(y=y)
# commented: for debugging
# u.to_csv("u.csv")
# Logit probability
return u / u.sum(dim)
[docs]def max(
qty: "AnyQuantity",
dim: "Dims" = None,
*,
skipna: Optional[bool] = None,
keep_attrs: Optional[bool] = None,
**kwargs: Any,
) -> "AnyQuantity":
"""Like :meth:`xarray.DataArray.max`."""
assert skipna is keep_attrs is None and 0 == len(kwargs), NotImplementedError
# FIXME This is AttrSeries only
return qty.groupby(level=dim).max() # type: ignore
[docs]def min(
qty: "AnyQuantity",
dim: "Dims" = None,
*,
skipna: Optional[bool] = None,
keep_attrs: Optional[bool] = None,
**kwargs: Any,
) -> "AnyQuantity":
"""Like :meth:`xarray.DataArray.min`."""
assert skipna is keep_attrs is None and 0 == len(kwargs), NotImplementedError
# FIXME This is AttrSeries only
return qty.groupby(level=dim).min() # type: ignore
[docs]def merge_data(
*others: Mapping[Hashable, pd.DataFrame],
) -> Dict[Hashable, pd.DataFrame]:
"""Slightly modified from message_ix_models.util.
.. todo: move upstream or merge functionality with
:func:`message_ix_models.util.merge_data`.
"""
keys: Set[Hashable] = reduce(lambda x, y: x | y.keys(), others, set())
return {k: pd.concat([o.get(k, None) for o in others]) for k in keys}
[docs]def iea_eei_fv(name: str, config: Dict) -> "AnyQuantity":
"""Returns base-year demand for freight from IEA EEI, with dimensions n-c-y."""
from message_ix_models.tools.iea import eei
result = eei.as_quantity(name, config["regions"]) # type: ignore [attr-defined]
ym1 = result.coords["y"].data[-1]
log.info(f"Use y={ym1} data for base-year freight transport activity")
assert set("nyt") == set(result.dims)
return result.sel(y=ym1, t="Total freight transport", drop=True)
[docs]def indexers_n_cd(config: Dict) -> Dict[str, xr.DataArray]:
"""Indexers for selecting (`n`, `census_division`) → `n`.
Based on :attr:`.Config.node_to_census_division`.
"""
n_cd_map = config["transport"].node_to_census_division
n, cd = zip(*n_cd_map.items())
return dict(
n=xr.DataArray(list(n), dims="n"),
census_division=xr.DataArray(list(cd), dims="n"),
)
[docs]def indexers_usage(technologies: List[Code]) -> Dict:
"""Indexers for replacing LDV `t` and `cg` with `t_new` for usage technologies."""
labels: Dict[str, List[str]] = dict(cg=[], t=[], t_new=[])
for t in technologies:
if not t.eval_annotation("is-disutility"):
continue
t_base, *_, cg = t.id.split()
labels["t"].append(t_base)
labels["cg"].append(cg)
labels["t_new"].append(t.id)
return {
"cg": xr.DataArray(labels["cg"], coords=[("t_new", labels["t_new"])]),
"t": xr.DataArray(labels["t"], coords=[("t_new", labels["t_new"])]),
}
[docs]def nodes_world_agg(config, dim: Hashable = "nl") -> Dict[Hashable, Mapping]:
"""Mapping to aggregate e.g. nl="World" from values for child nodes of "World".
This mapping should be used with :func:`.genno.operator.aggregate`, giving the
argument ``keep=False``. It includes 1:1 mapping from each region name to itself.
.. todo:: move upstream, to :mod:`message_ix_models`.
"""
from message_ix_models.model.structure import get_codes
result = {}
for n in get_codes(f"node/{config['regions']}"):
# "World" node should have no parent and some children. Countries (from
# pycountry) that are omitted from a mapping have neither parent nor children.
if len(n.child) and n.parent is None:
name = str(n)
# FIXME Remove. This is a hack to suit the legacy reporting, which expects
# global aggregates at *_GLB rather than "World".
new_name = f"{config['regions']}_GLB"
log.info(f"Aggregates for {n!r} will be labelled {new_name!r}")
name = new_name
# Global total as aggregate of child nodes
result = {name: list(map(str, n.child))}
# Also add "no-op" aggregates e.g. "R12_AFR" is the sum of ["R12_AFR"]
result.update({c: [c] for c in map(str, n.child)})
return {dim: result}
raise RuntimeError("Failed to identify the World node")
[docs]def price_units(qty: "AnyQuantity") -> "AnyQuantity":
"""Forcibly adjust price units, if necessary."""
target = "USD_2010 / km"
if not qty.units.is_compatible_with(target):
log.warning(f"Adjust price units from {qty.units} to {target}")
return apply_units(qty, target)
[docs]def quantity_from_config(
config: dict, name: str, dimensionality: Optional[Dict] = None
) -> "AnyQuantity":
if dimensionality:
raise NotImplementedError
result = getattr(config["transport"], name)
if not isinstance(result, genno.Quantity):
result = as_quantity(result)
return result
[docs]def relabel2(qty: "AnyQuantity", new_dims: dict):
"""Replace dimensions with new ones using label templates.
.. todo:: Choose a more descriptive name.
"""
from collections import defaultdict
from genno.operator import select
result = qty
# Iterate over new dimensions for which templates are provided
for new_dim, template in new_dims.items():
if new_dim in qty.dims: # pragma: no cover
print(qty.coords)
raise NotImplementedError(
f"Replace existing dimension {new_dim} in {qty.dims}"
)
# Identify 1 or more source dimension(s) in the template expression
# TODO improve the regex or use another method that can handle e.g. "{func(t)}"
source_dims = re.findall(r"{([^\.}]*)", template)
# Resulting labels
labels = defaultdict(list)
# Iterate over the Cartesian product of coords on the `source_dims`
for values in product(*[qty.coords[d].data for d in source_dims]):
_locals = dict() # Locals for eval()
for d, v in zip(source_dims, values):
_locals[d] = v
labels[d].append(v)
# Construct the label for the `new_dim` by formatting the template string
labels[new_dim].append(eval(f"f'{template}'", None, _locals))
# Convert matched lists of labels to xarray selectors
selectors = {
d: xr.DataArray(labels[d], coords=[(new_dim, labels[new_dim])])
for d in source_dims
}
result = select(result, selectors)
return result
[docs]def share_weight(
share: "AnyQuantity",
gdp: "AnyQuantity",
cost: "AnyQuantity",
lamda: "AnyQuantity",
t_modes: List[str],
y: List[int],
config: dict,
) -> "AnyQuantity":
"""Calculate mode share weights.
- In the base year (:py:`y[0]`), the weights for each |n| are as given in `share`.
- In the convergence year (:attr:`.Config.year_convergence`,
via :py:`config["transport"]`), the weights are between the same-node base year
mode shares and the mean of the base-year mode shares in 0 or more reference nodes
given by the mapping :attr:`Config.share_weight_convergence`.
- The interpolation between these points is given by the ratio :math:`k` between
the same-node convergence-year GDP PPP per capita (`gdp`) and the reference
node(s mean) base-year GDP PPP per capita.
- If no reference nodes are given, the values converge towards equal weights for
each of `t_modes`, with a fixed parameter :math:`k = 1/3`.
- Values for the years between the base year and the convergence year are
interpolated.
Parameters
----------
gdp :
GDP per capita in purchasing power parity.
Returns
-------
Quantity
With dimensions :math:`(n, t, y)`: |n| matching `gdp_ppp_cap; :math:`t` per
`t_modes`, and |y| per `y`.
"""
from builtins import min
# Extract info from arguments
cfg: Config = config["transport"]
nodes = sorted(gdp.coords["n"].data)
years = list(filter(lambda year: year <= cfg.year_convergence, y))
# Empty container for share weights
weight = xr.DataArray(np.nan, coords=[("n", nodes), ("y", years), ("t", t_modes)])
# Selectors
# A scalar induces xarray but not genno <= 1.21 to drop
y0: Dict[Any, Any] = dict(y=y[0])
y0_ = dict(y=[y[0]]) # Do not drop
yC: Dict[Any, Any] = dict(y=cfg.year_convergence)
# Weights in y0 for all modes and nodes
# NB here and below, with Python 3.9 one could do: dict(t=modes, n=nodes) | y0
idx = dict(t=t_modes, n=nodes, **y0)
w0 = share.sel(idx) / (cost.sel(idx).sel(c="transport", drop=True) ** lamda)
# Normalize to 1 across modes
w0 = w0 / w0.sum("t")
# Insert into `weight`
*_, weight.loc[y0_] = xr.align(weight, xr.DataArray.from_series(w0.to_series()))
# Weights at the convergence year, yC
for node in nodes:
# Retrieve reference nodes: a set of 0+ nodes to converge towards
ref_nodes = cfg.share_weight_convergence[node]
# Indexers
_1 = dict(n=node, **yC) # Same node, convergence year
_2 = dict(n=ref_nodes, **y0) # Reference node(s), base year
if ref_nodes:
# Ratio between this node's GDP in yC and the mean of the reference nodes'
# GDP values in y0. Maximum 1.0.
k = min(
(gdp.sel(_1) / (gdp.sel(_2).sum() / float(len(ref_nodes)))).item(), 1.0
)
# As k tends to 1, converge towards the mean of the reference nodes' share
# weights in y0/base shares.
target = weight.sel(_2).mean("n")
else:
# `node` without `ref_nodes`
# Arbitrary value
k = 1 / 3.0
# As k tends to 1, converge towards equal weights
target = xr.DataArray(1.0 / len(t_modes))
# Scale weights in convergence year
# - As k tends to 0, converge towards the same node's base shares.
weight.loc[_1] = k * target + (1 - k) * weight.sel(n=node, **y0)
# Interpolate linearly between y0 and yC
# NB this will not work if yC is before the final period; it will leave NaN after yC
weight = weight.interpolate_na(dim="y")
return genno.Quantity(weight)
[docs]def smooth(qty: "AnyQuantity") -> "AnyQuantity":
"""Smooth `qty` (e.g. PRICE_COMMODITY) in the ``y`` dimension."""
from genno.operator import add, concat
# General smoothing
result = add(0.25 * qty.shift(y=-1), 0.5 * qty, 0.25 * qty.shift(y=1))
y = qty.coords["y"].values
# Shorthand for weights
def _w(values, years):
return genno.Quantity(values, coords={"y": years}, units="")
# First period
r0 = (qty * _w([0.4, 0.4, 0.2], y[:3])).sum("y").expand_dims(dict(y=y[:1]))
# Final period. “closer to the trend line”
# NB the inherited R file used a formula equivalent to weights like [-⅛, 0, ⅜, ¾];
# didn't make much sense.
r_m1 = (qty * _w([0.2, 0.2, 0.6], y[-3:])).sum("y").expand_dims(dict(y=y[-1:]))
# apply_units() is to work around khaeru/genno#64
# TODO remove when fixed upstream
return apply_units(concat(r0, result.sel(y=y[1:-1]), r_m1), qty.units)
def _add_transport_data(func, c: "Computer", name: str, *, key) -> None:
"""Add data from `key` to the target scenario.
Adds one task to `c` that uses :func:`.add_par_data` to store the data from `key` on
"scenario". Also updates the "add transport data" computation by appending the new
task.
"""
c.add(f"add {name}", "add_par_data", "scenario", key, "dry_run", strict=True)
c.graph["add transport data"].append(f"add {name}")
@Operator.define(helper=_add_transport_data)
def transport_data(*args):
"""No action.
This exists to connect :func:`._add_transport_data` to
:meth:`genno.Computer.add`.
"""
pass # pragma: no cover
[docs]def transport_check(scenario: "Scenario", ACT: "AnyQuantity") -> pd.Series:
"""Reporting operator for :func:`.check`."""
info = ScenarioInfo(scenario)
# Mapping from check name → bool
checks = {}
# Correct number of outputs
ACT_lf = ACT.sel(t=["transport freight load factor", "transport pax load factor"])
checks["'transport * load factor' technologies are active"] = len(
ACT_lf
) == 2 * len(info.Y) * (len(info.N) - 1)
# # Force the check to fail
# checks['(fail for debugging)'] = False
return pd.Series(checks)
[docs]def votm(gdp_ppp_cap: "AnyQuantity") -> "AnyQuantity":
"""Calculate value of time multiplier.
A value of 1 means the VoT is equal to the wage rate per hour.
Parameters
----------
gdp_ppp_cap
PPP GDP per capita.
"""
from genno.operator import assign_units
u = gdp_ppp_cap.units
assert_units(gdp_ppp_cap, "kUSD / passenger / year")
n = gdp_ppp_cap.coords["n"].data
result = 1 / (
1
+ assign_units(
np.exp(
(genno.Quantity(30, units=u).expand_dims({"n": n}) - gdp_ppp_cap) / 20
),
units="",
)
)
assert_units(result, "")
return result