Source code for message_ix_models.model.transport.factor

"""Tools for scaling factors.

.. todo:: Add further :class:`.Layer` subclasses beyond :class:`.Constant` for, for
   instance:

   - Linear interpolation between given points.
   - Exponentials, splines, and other functions.
"""

import logging
import operator
import re
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from functools import partial
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    List,
    Mapping,
    Optional,
    Sequence,
    Tuple,
    Union,
)

import pandas as pd
from genno import Computer, Key, Quantity
from genno import operator as g

from message_ix_models.project.ssp import SSP_2024

if TYPE_CHECKING:
    import genno.core.key

log = logging.getLogger(__name__)


[docs]class Layer(ABC): """Base class for layered assumptions used to build up a factor quantification.""" #: Operation for combining the quantification of this layer with the quantification #: of the previous layer. Used by :meth:`apply`. #: #: Choices might include: #: #: - :func:`operator.mul`: take the product of this layer and previous layer's #: values. #: - :func:`.operator.pow`: raise the previous layer's values to the values from #: this layer. This can be used with :py:`0` and :py:`1` to replace certain #: values in `other` with 1.0, since :py:`other ** 0 = 1.0` and #: :py:`other ** 1 = other`. operation: Callable def __hash__(self) -> int: return hash(repr(self))
[docs] @abstractmethod def quantify(self, coords: Mapping[str, Any]) -> Quantity: """Return a quantification of the layer. The returned value: - **May** have any of the dimensions indicated by `coords`. - For such dimensions, **should** have some or all of the labels in `coords`. Subclasses **must** implement this method. """ pass
[docs] def apply(self, other: Quantity, coords: Mapping[str, Any]) -> Quantity: """:meth:`.quantify` this layer and combine it with `other`. Subclasses **may** override this method. The default implementation combines `other` with the results of :meth:`quantify` using :attr:`operation`. """ return self.operation(other, self.quantify(coords))
[docs]class Constant(Layer): """A value that is constant across 1 or more :attr:`dims`. Parameters ---------- value : If not :class:`.Quantity`, it is transformed to one. dims : Either a sequence of :class:`str`, or a single :class:`str` expression like "x y z" or "x-y-z", which is split to a sequence. """ #: Fixed value. value: Quantity #: Dimensions of the result. dims: Tuple[str, ...] operation = operator.mul
[docs] def __init__(self, value: Union[float, Quantity], dims: Union[str, Sequence[str]]): self.value = value if isinstance(value, Quantity) else Quantity(value) self.dims = ( tuple(re.split("[ -]", dims)) if isinstance(dims, str) else tuple(dims) )
[docs] def quantify(self, coords): result = self.value # FIXME genno cannot handle multiple dimensions simultaneously for d in self.dims: result = result.expand_dims(**{d: coords[d]}) return result
[docs]class Omit(Layer): """A layer that excludes 1 or more :attr:`labels` along :attr:`dim`. Example ------- >>> factor.Omit(x=["x1", "x3"]) """ #: Dimension along which to omit :attr:`labels`. dim: str #: Specific labels or coords to omit. labels: list operation = operator.pow
[docs] def __init__(self, **kwargs): assert 1 == len(kwargs) for k, v in kwargs.items(): self.dim = k self.labels = v
def _mask(self, v_in, v_out, other) -> pd.Series: """Return a ‘mask’ for use with :func:`operator.pow`. The result has `v_in` where entries of `other` are in :attr:`labels`; otherwise `v_out`. """ return pd.Series({x: (v_in if x in self.labels else v_out) for x in other})
[docs] def quantify(self, coords): return Quantity(self._mask(0.0, 1.0, coords[self.dim]).rename_axis(self.dim))
[docs]class Keep(Omit): """A layer that preserves values for 1 or more :attr:`labels` along :attr:`dim`."""
[docs] def quantify(self, coords): return Quantity(self._mask(1.0, 0.0, coords[self.dim]).rename_axis(self.dim))
[docs]@dataclass class Map(Layer): """A layer that maps to different :attr:`values` along :attr:`dim`. Parameters ---------- dim : Dimension ID. values : optional Mapping from labels or coords along `dim` to other :class:`.Layers` which produce the value(s) for those coords. **value_kwargs : Same as `values`, but as keyword arguments. Example ------- >>> layer = factor.Map( ... "new_dim", ... x=factor.Constant(2.0, "y z"), ... x=factor.Constant(3.0, "y z"), ... ) """ dim: str values: Dict[str, Layer] operation = operator.mul
[docs] def __init__( self, dim: str, values: Optional[Dict[str, Layer]] = None, **value_kwargs: Layer ): self.dim = dim self.values = values or value_kwargs
__hash__ = Layer.__hash__
[docs] def quantify(self, coords): return g.concat( *[ v.quantify(coords).expand_dims(**{self.dim: k}) for k, v in self.values.items() ] )
[docs]class ScenarioSetting(Layer): """A layer that transforms a ‘scenario’ identifier to a particular ‘setting’. This layer handles the common case that multiple ‘scenario’ identifiers may be represented in a model using the same quantification. It uses coords along a dimension named ‘setting’ to represent these distinct quantifications. The :meth:`quantify` and :meth:`apply` methods have special behaviour """ #: Mapping from scenario identifier to setting label. setting: Dict[Any, str] #: Default setting. default: str operation = operator.mul
[docs] def __init__(self, setting: Optional[dict] = None, *, default=None, **setting_kw): self.setting = setting or setting_kw self.default = default
def __post_init__(self): """Check validity of the setting and values.""" labels0 = set(self.setting.values()) labels1 = set(self.value.keys()) if not labels0 <= labels1: raise ValueError( f"Setting labels {labels0} do not match value labels {labels1}" )
[docs] @classmethod def of_enum(cls, enum, data_expr: str, **kwargs): """Create from simpler data for an enumeration. Parameters ---------- enum : An enumeration, for instance :any:`.SSP_2024`. data_expr : str A string of the form "A=foo B=bar" indicating that the ‘setting’ for `enum` member "A" is "foo", and so on. **kwargs : Passed to :class:`ScenarioSetting`. """ data = dict([item.split("=") for item in data_expr.split()]) # Look `enum` members corresponding to keys of `data` setting = {enum[key]: value for key, value in data.items()} if set(setting) != set(enum): extra = set(enum) - set(setting) missing = set(setting) - set(enum) raise ValueError( f"Scenario identifiers must match members of {enum}; " f"missing {missing} and/or extra {extra}" ) # Call the constructor return cls(setting=setting, **kwargs)
[docs] def quantify(self, coords): """Return a quantification of the layer. The key :py:`"scenario"` is **removed** from `coords`. (This means it is not available to subsequent layers, and also not included in among the dimensions of the :meth:`.Factor.quantify` result.) The value returned is the value 1.0 with the single dimension ‘setting’ and label obtained by passing the "scenario" coord through :attr:`setting`, or using :attr:`default` if it does not appear. """ scenario = coords.pop("scenario") try: setting = self.setting[scenario] except KeyError: if not self.default: print(self.setting) raise log.warning( f"Use default setting {self.default!r} for unrecognized {scenario}" ) setting = self.default return Quantity(1.0).expand_dims(setting=setting)
[docs] def apply(self, other, coords): """:meth:`.quantify` this layer and combine it with `other`. This drops the ‘setting’ dimension from `other`. """ return super().apply(other, coords).drop_vars("setting")
[docs]@dataclass class Factor: """Representation of assumptions used to construct a factor. The assumptions are stored as a sequence of :attr:`layers`, and combined one by one to produce a multi-dimensional :class:`.Quantity`. Factor quantifications can be used in multiplicative, additive, or in other, possibly more complicated ways. """ #: Ordered list of :class:`.Layer`. layers: List[Layer] = field(default_factory=list) def __hash__(self): return hash(tuple(self.layers))
[docs] def quantify(self, **coords) -> Quantity: """Return a quantification. The result will have **at least** the dimensions and labels in `coords`, and **may** may have additional dimensions not from `coords`. Parameters ---------- coords : Target :mod:`xarray`-style coords: dimension IDs mapped to lists of labels. """ # Base result: quantify the first layer result = self.layers[0].quantify(coords) # Handle each layer in sequence for layer in self.layers[1:]: # Compute the quantification of the layer, apply to the previous result result = layer.apply(result, coords) # Ensure the result has complete dimensionality and scope assert set(result.coords) >= set(coords), (result.coords, coords) for k, v in coords.items(): assert set(v) == set(result.coords[k].data) return result
# genno connection
[docs] def add_tasks( self, c: Computer, key: "genno.core.key.KeyLike", *inputs: "genno.Key", scenario_expr: str, ) -> "genno.core.key.KeyLike": """Add a task to `c` to return the quantified Factor.""" dims = tuple(Key(k).name for k in inputs) return c.add_single( key, partial(self, dims=dims, scenario_expr=scenario_expr), "config", *inputs, )
def __call__( self, config, *coords, dims: Tuple[str, ...], scenario_expr: str ) -> Quantity: """Invoke :meth:`quantify`, for use with :mod:`genno`.""" kw = dict(zip(dims, coords)) kw.update(scenario=eval(scenario_expr, dict(config=config))) return self.quantify(**kw)
#: Common settings of ‘L’ow -20%, ‘M’edium = 0%, ‘H’igh = +20%. LMH = Map( "setting", L=Constant(0.8, "n y"), M=Constant(1.0, "n y"), H=Constant(1.2, "n y") ) #: Exclude 2020 and 2025 from certain factors. OMIT_2025 = Omit(y=[2020, 2025]) #: Common Factors for SSP quantification in transport. COMMON = { # “Share of Electric vehicles across SSPs” # NB(PNK) The sign of these is reversed versus the spreadsheet, as indicated in the # Slack thread: "high improvement" → "'L'ow investment cost". # TODO Implement SSP4 as HIC=L, LIC=H (what about MIC?) # TODO Interpret the note “?? / hybrid / e-fuel = We assume that 20% reduction in # inv_cost for ICE_nga, ICAe_ffv, ICAm_ptrp, ICH_chyb, IGH_ghyb, IAHe_ptrp, # IAHm_ptrp, HFC_ptrp over the relevant SSP trajectory” —under which conditions # does this apply? "ldv ev inv_cost": Factor( [ LMH, OMIT_2025, Keep(t=["ELC_100", "PHEV_ptrp"]), ScenarioSetting.of_enum(SSP_2024, "1=L 2=M 3=H 4=M 5=H", default="M"), ] ), # “Occupancy of LDVs should differ across SSPs” # TODO Implement SSP4 as "HIC: L, LIC: H" "ldv load factor": Factor( [ LMH, OMIT_2025, ScenarioSetting.of_enum(SSP_2024, "1=H 2=M 3=M 4=L 5=L", default="M"), ] ), # “Difference in energy intensity of LDVs across SSPs” # NB "High fuel economy" = "High efficiency" = *lower* input coefficient. # TODO Implement SSP4 as “divergence (across and within)” "ldv fuel economy": Factor( [ LMH, Constant(1.0, "t"), OMIT_2025, ScenarioSetting.of_enum(SSP_2024, "1=H 2=M 3=L 4=M 5=L", default="M"), ] ), # “Mode share change by [AIR] across SSPs” # NB To be applied as shift from (LDV + RAIL) modes to AIR mode. "pdt air": Factor( [LMH, ScenarioSetting.of_enum(SSP_2024, "1=L 2=M 3=H 4=M 5=H", default="M")] ), # “Total pdt (active mode) differences across SSPs” # This is implemented as the remaining share of PDT for "non-active" modes; that is, # once active modes are subtracted. # TODO Implement SSP4 as "HIC=H, MIC=M, LIC=M" "pdt non-active": Factor( [ Map( "setting", H=Constant(0.9, "n y"), M=Constant(0.95, "n y"), L=Constant(1.0, "n y"), ), OMIT_2025, ScenarioSetting.of_enum(SSP_2024, "1=H 2=M 3=L 4=M 5=L", default="M"), ] ), # “Mode share of RAIL/PT across SSPs” # NB(PNK) According to the Slack thread, the same factors are applied to shifts: # - from LDV to RAIL (in the "urban public transport" *and* in "long-distance # public modes") # - from LDV to BUS. # They are stored here as the same value, to be applied where indicated. # TODO Interpret text: "SSP3=low/medium" "pdt ldv → PT shift": Factor( [LMH, ScenarioSetting.of_enum(SSP_2024, "1=H 2=M 3=L 4=M 5=L", default="M")] ), # “Difference in electrification of RAIL across SSPs” # NB(PNK) The sign of these are reversed versus the spread sheet: "high improvement # [in cost]" → "Low cost". # TODO Implement SSP4 as "HIC=L, MIC=H, LIC=H" "rail inv_cost": Factor( [ LMH, Keep(t=["Hspeed_rai", "Mspeed_rai", "rail_pub"]), ScenarioSetting.of_enum(SSP_2024, "1=L 2=M 3=H 4=M 5=H", default="M"), ] ), }
[docs]def insert(c: Computer, key, *, name: str, target: Key, dims: str = "ny"): """Update `c` to apply the factor :py:`COMMON[name]` to `key`. Use via :meth:`genno.Computer.apply`. """ k_target = Key(target) dim_coord = { "n": "n::ex world", "t": "t::transport", "y": "y::model", } coords = [dim_coord[d] for d in dims] se = "config['transport'].ssp" # Quantify the factor c.add(k_target + "ssp factor", COMMON[name], *coords, scenario_expr=se) # Multiply `key` by the factor c.add(k_target, "mul", key, k_target + "ssp factor") return k_target