import logging
import re
from typing import Optional, Tuple
import pandas as pd
from genno import Quantity
from genno import operator as g
from iam_units import convert_gwp
from message_ix import Scenario, make_df
from message_ix_models import ScenarioInfo
from message_ix_models.util import package_data_path
from .structure import get_codes
log = logging.getLogger(__name__)
[docs]def get_emission_factors(units: Optional[str] = None) -> Quantity:
"""Return carbon emission factors.
Values are from the file :file:`message_ix_models/data/ipcc/1996_v3_t1-2.csv`, in
turn from `IPCC <https://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch1wb1.pdf>`_
(see Table 1-2 on page 1.6); these are the same that appear on the "Emissions from
energy" page of the MESSAGEix-GLOBIOM documentation.
The fuel dimension and names in the source are mapped to a :math:`c` ("commodity")
dimension and labels from :ref:`commodity.yaml <commodity-yaml>`, using the
``ipcc-1996-name`` annotations appearing in the latter. A value for "methanol" that
appears in the MESSAGEix-GLOBIOM docs table but not in the source is appended.
Parameters
----------
unit : str, optional
Expression for units of the returned quantity. Tested values include:
- “tC / TJ”, source units (default),
- “t CO2 / TJ”, and
- “t C / kWa”, internal units in MESSAGEix-GLOBIOM, for instance for
"relation_activity" entries for emissions relations.
Returns
-------
Quantity
with 1 dimension (:math:`c`).
"""
# Prepare information about commodities
commodities = get_codes("commodity")
relabel = {} # Mapping from IPCC names/IDs to message_ix_models commodity ID
select = [] # Select only the commodities needed
for c in commodities:
try:
ipcc_name = str(c.get_annotation(id="ipcc-1996-name").text)
except KeyError:
continue
else:
relabel[ipcc_name] = c.id
select.append(c.id)
# Load data from file; relabel; and select only the values needed
result = (
g.load_file(package_data_path("ipcc", "1996_v3_t1-2.csv"), dims={"fuel": "c"})
.pipe(g.relabel, dict(c=relabel))
.pipe(g.select, dict(c=select))
)
# Manually insert a value for methanol
result = g.concat(
result,
Quantity(pd.Series(17.4, pd.Index(["methanol"], name="c")), units=result.units),
)
result.attrs["species"] = "C"
if units is not None:
# Identify a GWP factor for target `units`, if any
to_units, to_species = split_species(units)
gwp_factor = convert_gwp(
"AR5GWP100", (1.0, str(result.units)), "C", to_species
).magnitude
else:
gwp_factor, to_units = 1.0, result.units
# Multiply by the GWP factor; let genno/pint handle other conversion
return result.pipe(g.mul, Quantity(gwp_factor)).pipe(g.convert_units, to_units)
[docs]def add_tax_emission(
scen: Scenario,
price: float,
conversion_factor: Optional[float] = None,
drate_parameter="drate",
) -> None:
"""Add a global CO₂ price to `scen`.
A carbon price is implemented on node=“World” by populating the
:ref:`MESSAGEix parameter <message-ix:section_parameter_emissions>`
``tax_emission``, starting from the first model year and covering the entire model
horizon. The tax has an annual growth rate equal to the discount rate.
The other dimensions of ``tax_emission`` are filled with type_emission=“TCE” and
type_tec=“all”.
Parameters
----------
scen : :class:`message_ix.Scenario`
price : float
Price in the first model year, in USD / tonne CO₂.
conversion_factor : float, optional
Factor for converting `price` into the model's internal emissions units,
currently USD / tonne carbon. Optional: a default value is retrieved from
:mod:`iam_units`.
drate_parameter : str; one of "drate" or "interestrate"
Name of the parameter to use for the growth rate of the carbon price.
"""
years = ScenarioInfo(scen).Y
filters = dict(year=years)
# Default: since the mass of the species is in the denominator, take the inverse
conversion_factor = conversion_factor or 1.0 / convert_gwp(
"AR5GWP100", "1 t", "CO2", "C"
)
# Duration of periods
dp = scen.par("duration_period", filters=filters).set_index("year")["value"]
# Retrieve the discount rate
if drate_parameter == "interestrate":
# MESSAGE parameter with "year" dimension
r = scen.par(drate_parameter, filters=filters).set_index("year")["value"]
else:
# MACRO parameter with "node" dimension
drates = scen.par(drate_parameter).value.unique()
if len(drates) > 1:
log.warning(f"Using the first of multiple discount rates: drate={drates}")
r = pd.Series([drates[0]] * len(years), index=pd.Index(years, name="year"))
# Compute cumulative growth versus the first period
r_cumulative = (r + 1).pow(dp.shift(-1)).cumprod().shift(1, fill_value=1.0)
# Assemble the parameter data
name = "tax_emission"
data = make_df(
name,
value=(price * conversion_factor * r_cumulative),
type_year=r_cumulative.index,
node="World",
type_emission="TCE",
type_tec="all",
unit="USD/tC",
)
with scen.transact("Added carbon price"):
scen.add_par(name, data)
[docs]def split_species(unit_expr: str) -> Tuple[str, Optional[str]]:
"""Split `unit_expr` to an expression without a unit mention, and maybe species."""
if match := re.fullmatch("(.*)(CO2|C)(.*)", unit_expr):
return f"{match.group(1)}{match.group(3)}", match.group(2)
else:
return unit_expr, None