Storage back ends (ixmp.backend
)
ixmp
includes ixmp.backend.jdbc.JDBCBackend
, which can store data in many types of relational database management systems (RDBMS) that have Java DataBase Connector (JDBC) interfaces—hence its name.
ixmp
is extensible to support other methods of storing data: in non-JDBC RDBMS, non-relational databases, local files, memory, or other ways.
Developers wishing to add such capabilities may subclass ixmp.backend.base.Backend
and implement its methods.
Provided backends
- ixmp.backend.BACKENDS: dict[str, type['ixmp.backend.base.Backend']] = {'jdbc': <class 'ixmp.backend.jdbc.JDBCBackend'>}[source]
Mapping from names to available backends. To register additional backends, add entries to this dictionary.
- class ixmp.backend.jdbc.JDBCBackend(jvmargs=None, **kwargs)[source]
Backend using JPype/JDBC to connect to Oracle and HyperSQL databases.
This backend is based on the third-party JPype Python package that allows interaction with Java code.
- Parameters:
driver (
'oracle'
or'hsqldb'
) – JDBC driver to use.path (
os.PathLike
, optional) – Path to the HyperSQL database.url (
str
, optional) – Partial or complete JDBC URL for the Oracle or HyperSQL database, e.g.database-server.example.com:PORT:SCHEMA
. See Configuration.user (
str
, optional) – Database user name.password (
str
, optional) – Database user password.cache (
bool
, optional) – IfTrue
(the default), cache Python objects after conversion from Java objects.jvmargs (
str
, optional) – Java Virtual Machine arguments. Seestart_jvm()
.dbprops (
os.PathLike
, optional) – Withdriver='oracle'
, the path to a database properties file containing driver, url, user, and password information.
JDBCBackend supports:
Databases in local files (HyperSQL) using
driver='hsqldb'
and the path argument.Remote, Oracle databases using
driver='oracle'
and the url, username and password arguments.Temporary, in-memory databases using
driver='hsqldb'
and the url argument. Use the url parameter with the formatjdbc:hsqldb:mem:[NAME]
, where [NAME] is any string:mp = ixmp.Platform( backend="jdbc", driver="hsqldb", url="jdbc:hsqldb:mem:temporary platform", )
JDBCBackend caches values in memory to improve performance when repeatedly reading data from the same items with
par()
,equ()
, orvar()
.Tip
If repeatedly accessing the same item with different filters:
Tip
Modifying an item by adding or deleting elements invalidates its cache.
JDBCBackend has the following limitations:
The comment argument to
Platform.add_unit()
is limited to 64 characters.Infinite floating-point values (
numpy.inf
,math.inf
) cannot be stored usingTimeSeries.add_timeseries()
when using an Oracle database viadriver='oracle'
.
JDBCBackend’s implementation allows the following kinds of file input and output:
read_file
(path, item_type, **kwargs)Read Platform, TimeSeries, or Scenario data from file.
write_file
(path, item_type, **kwargs)Write Platform, TimeSeries, or Scenario data to file.
- classmethod handle_config(args, kwargs)[source]
Handle platform/backend config arguments.
args will overwrite any kwargs, and may be one of:
(“oracle”, url, user, password, [jvmargs]) for an Oracle database.
(“hsqldb”, path, [jvmargs]) for a file-backed HyperSQL database.
(“hsqldb”,) with “url” supplied via kwargs, e.g. “jdbc:hsqldb:mem://foo” for an in-memory database.
- read_file(path, item_type: ItemType, **kwargs)[source]
Read Platform, TimeSeries, or Scenario data from file.
JDBCBackend supports reading from:
path='*.gdx', item_type=ItemType.MODEL
. The keyword arguments check_solution, comment, equ_list, and var_list are required.
- Parameters:
See also
- write_file(path, item_type: ItemType, **kwargs)[source]
Write Platform, TimeSeries, or Scenario data to file.
JDBCBackend supports writing to:
path='*.gdx', item_type=ItemType.SET | ItemType.PAR
.path='*.csv', item_type=TS
. The default keyword argument is required.
- Parameters:
filters (
dict
ofdict
ofstr
) –Restrict items written. The following filters may be used:
model : str
scenario : str
variable : list of str
default : bool. If
True
, only data from TimeSeries versions withTimeSeries.set_as_default()
are written.
See also
- ixmp.backend.jdbc.start_jvm(jvmargs=None)[source]
Start the Java Virtual Machine via JPype.
- Parameters:
jvmargs (
str
orlist
ofstr
, optional) –Additional arguments for launching the JVM, passed to
jpype.startJVM()
.For instance, to set the maximum heap space to 4 GiB, give
jvmargs=['-Xmx4G']
. See the JVM documentation for a list of options.
Backend API
Abstract base class for backends. |
|
|
Backend with additional features for caching data. |
|
Type of data items in |
Lists of field names for tuples returned by Backend API methods. |
|
Partial list of dimensions for the IAMC data structure, or “IAMC format”. |
ixmp.Platform
implements a user-friendly API for scientific programming. This means its methods can take many types of arguments, check, and transform them—in a way that provides modeler-users with easy, intuitive workflows.In contrast,
Backend
has a very simple API that accepts arguments and returns values in basic Python data types and structures.As a result:
Additional Backends may inherit from
Backend
orCachingBackend
.
- class ixmp.backend.base.Backend[source]
Abstract base class for backends.
In the following, the bold-face words required, optional, etc. have specific meanings as described in IETF RFC 2119.
Backend is an abstract class; this means it must be subclassed. Most of its methods are decorated with
abc.abstractmethod
; this means they are required and must be overridden by subclasses.Others, marked below with “OPTIONAL:”, are not so decorated. For these methods, the behaviour in the base Backend—often, nothing—is an acceptable default behaviour. Subclasses may extend or replace this behaviour as desired, so long as the methods still perform the actions described in the description.
Backends:
must only raise standard Python exceptions.
must implement the data model as described, or raise
NotImplementedError
for not implemented parts of the data model.
Methods related to
ixmp.Platform
:Add (register) new model name.
Add (register) new scenario name.
OPTIONAL: Close database connection(s).
OPTIONAL: Return user authorization for models.
Read documentation from database
OPTIONAL: Get logging level for the backend and other code.
Retrieve all metadata attached to a specific target.
List existing model names.
Iterate over all nodes stored on the Platform.
Iterate over TimeSeries stored on the Platform.
List existing scenario names.
Return all registered symbols for units of measurement.
OPTIONAL: Handle platform/backend config arguments.
OPTIONAL: (Re-)open database connection(s).
OPTIONAL: Read Platform, TimeSeries, or Scenario data from file.
Remove metadata attached to a target.
Save documentation to database
OPTIONAL: Set logging level for the backend and other code.
Set metadata on a target.
Add a node name to the Platform.
Add a unit of measurement to the Platform.
OPTIONAL: Write Platform, TimeSeries, or Scenario data to file.
Methods related to
ixmp.TimeSeries
:Each method has an argument ts, a reference to the TimeSeries object being manipulated.
‘Geodata’ is otherwise identical to regular timeseries data, except value are
str
rather thanfloat
.
Check out ts for modification.
Commit changes to ts.
Remove time series data.
Remove 'geodata' values.
Discard changes to ts since the last
check_out()
.Retrieve the existing TimeSeries (or Scenario) ts.
Retrieve time series data.
Retrieve time-series 'geodata'.
Create a new TimeSeries (or Scenario) ts.
Return
True
if ts is the default version for its (model, scenario).Return the date of the last modification of the ts, if any.
OPTIONAL: Load ts data into memory.
Return the run ID of the ts.
Store data.
Set the current
TimeSeries.version
as the default.Store time series geodata.
Methods related to
ixmp.Scenario
:Each method has an argument s, a reference to the Scenario object being manipulated.
Clone s.
Remove an item name of type.
Retrieve all metadata attached to a specific target.
Return True if Scenario s has been solved.
Initialize an item name of type.
Remove elements of item name.
Return elements of item name.
Add keys or values to item name.
Return the index sets or names of item name.
Return a list of names of items of type.
Remove metadata attached to a target.
Set metadata on a target.
Methods related to
message_ix.Scenario
:Each method has an argument ms, a reference to the Scenario object being manipulated.
Warning
These methods may be moved to ixmp in a future release.
Get elements of a category mapping.
Return list of categories in mapping name.
Add elements to category mapping.
- abstract add_model_name(name: str) None [source]
Add (register) new model name.
- Parameters:
name (
str
) – New model name
- abstract add_scenario_name(name: str) None [source]
Add (register) new scenario name.
- Parameters:
name (
str
) – New scenario name
- abstract cat_get_elements(ms: Scenario, name: str, cat: str) list[str] [source]
Get elements of a category mapping.
- abstract cat_list(ms: Scenario, name: str) list[str] [source]
Return list of categories in mapping name.
- abstract cat_set_elements(ms: Scenario, name: str, cat: str, keys: str | Sequence[str], is_unique: bool) None [source]
Add elements to category mapping.
- Parameters:
name (
str
) – Name of the category mapping set.cat (
str
) – Name of the category within name.keys (
collections.abc.Iterable
ofstr
orlist
ofstr
) – Keys to add to cat.is_unique (
bool
) –If
True
:keys must contain only one key.
The Backend must remove any existing member of cat, so that it has only one element.
- abstract check_out(ts: TimeSeries, timeseries_only: bool) None [source]
Check out ts for modification.
- Parameters:
timeseries_only (
bool
) –???
- abstract clear_solution(s: Scenario, from_year=None)[source]
Remove data associated with a model solution.
Todo
Document.
- abstract clone(s: Scenario, platform_dest: Platform, model: str, scenario: str, annotation: str, keep_solution: bool, first_model_year: int | None = None) Scenario [source]
Clone s.
- Parameters:
platform_dest (
Platform
) – Target backend. May be the same ass.platform
.model (
str
) – New model name.scenario (
str
) – New scenario name.annotation (
str
) – Description for the creation of the new scenario.keep_solution (
bool
) – IfTrue
, model solution data is also cloned. IfFalse
, it is discarded.first_model_year (
int
orNone
) – Ifint
, must be greater than the first model year of s.
- Returns:
The cloned Scenario. If s is an instance of a subclass of
ixmp.Scenario
, the returned object must be of the same subclass.- Return type:
- close_db() None [source]
OPTIONAL: Close database connection(s).
Close any database connection(s), if open.
- abstract commit(ts: TimeSeries, comment: str) None [source]
Commit changes to ts.
ts_init may modify the
version
attribute of ts.- Parameters:
comment (
str
) – Description of the changes being committed.
- del_ts(ts: TimeSeries) None [source]
OPTIONAL: Free memory associated with the TimeSeries ts.
The default implementation has no effect.
- abstract delete(ts: TimeSeries, region: str, variable: str, subannual: str, years: Iterable[int], unit: str) None [source]
Remove time series data.
- abstract delete_geo(ts: TimeSeries, region: str, variable: str, subannual: str, years: Iterable[int], unit: str) None [source]
Remove ‘geodata’ values.
- abstract delete_item(s: Scenario, type: str, name: str) None [source]
Remove an item name of type.
- Parameters:
type (
'set'
or'par'
or'equ'
) –name (
str
) – Name of the item to delete.
- abstract discard_changes(ts: TimeSeries) None [source]
Discard changes to ts since the last
check_out()
.
- abstract get(ts: TimeSeries) None [source]
Retrieve the existing TimeSeries (or Scenario) ts.
The TimeSeries is identified based on the unique combination of the attributes of ts:
If
version
isNone
, the Backend must return the version marked as default, and must set the attribute value.If ts is a Scenario,
get()
must set thescheme
attribute with the value previously passed toinit()
.- Raises:
ValueError – If
model
orscenario
does not exist on the Platform.
See also
- get_auth(user: str, models: Sequence[str], kind: str) dict[str, bool] [source]
OPTIONAL: Return user authorization for models.
If the Backend implements access control, this method must indicate whether user has permission kind for each of models.
kind may be ‘read’/’view’, ‘write’/’modify’, or other values;
get_auth()
should raise exceptions on invalid values.
- abstract get_data(ts: TimeSeries, region: Sequence[str], variable: Sequence[str], unit: Sequence[str], year: Sequence[str]) Iterable[tuple[str, str, str, int, float]] [source]
Retrieve time series data.
- Parameters:
- Yields:
tuple
– The members of each tuple are:ID
Type
Description
region
str
Region name
variable
str
Variable name
unit
str
Unit symbol
year
int
Year
value
float
Data value
- abstract get_doc(domain: str, name: str | None = None) str | dict [source]
Read documentation from database
- Parameters:
- Returns:
String representing fragment of documentation if name is passed as parameter or dictionary containing mapping between name of domain object (e.g. model name) and string representing fragment when name parameter is omitted.
- Return type:
- abstract get_geo(ts: TimeSeries) Iterable[tuple[str, str, int, str, str, str, bool]] [source]
Retrieve time-series ‘geodata’.
- get_log_level() str [source]
OPTIONAL: Get logging level for the backend and other code.
The default implementation returns the effective level of the “ixmp.backend.base” logger; usually the same as “ixmp” or “ixmp.backend” (if set).
- Returns:
Name of a Python logging level.
- Return type:
See also
- abstract get_meta(model: str | None, scenario: str | None, version: int | None, strict: bool) dict[str, Any] [source]
Retrieve all metadata attached to a specific target.
Depending on which of model, scenario, version are
None
, metadata attached to one of the four kinds of metadata targets (see Metadata) is returned.If strict is
False
, thenget_meta()
must also return metadata attached to less specific or “higher level” targets:For (model, scenario, version), these are (model, scenario); (model,); and (scenario).
For (model, scenario), these are (model,) and (scenario,).
For (model,) or (scenario,), there are no less specific targets.
- Parameters:
model (
str
, optional) – Model name of metadata target.scenario (
str
, optional) – Scenario name of metadata target.version (
int
, optional) –TimeSeries.version
of metadata target.strict (
bool
) – Only retrieve metadata from the specified target.
- Returns:
Mapping from metadata names/identifiers (
str
) to values (Any
).- Return type:
- Raises:
ValueError – on unsupported (model, scenario, version) combinations.
- abstract get_nodes() Iterable[tuple[str, Optional[str], str, str]] [source]
Iterate over all nodes stored on the Platform.
- Yields:
tuple
– The members of each tuple are:ID
Type
Description
region
str
Node name or synonym for node
mapped_to
str or None
Node name
parent
str
Parent node name
hierarchy
str
Node hierarchy ID
See also
- abstract get_scenarios(default: bool, model: str | None, scenario: str | None) Iterable[tuple[str, str, str, bool, bool, str, str, str, str, str, str, str, int]] [source]
Iterate over TimeSeries stored on the Platform.
Scenarios, as subclasses of TimeSeries, are also included.
- Parameters:
- Yields:
tuple
– The members of each tuple are:ID
Type
Description
model
str
Model name
scenario
str
Scenario name
scheme
str
Scheme name
is_default
bool
True
if version is the defaultis_locked
bool
True
if read-onlycre_user
str
Name of user who created the TimeSeries
cre_date
str
Creation datetime
upd_user
str
Name of user who last modified the TimeSeries
upd_date
str
Modification datetime
lock_user
str
Name of user who locked the TimeSeries
lock_date
str
Lock datetime
annotation
str
Description of the TimeSeries
version
int
Version
- abstract get_timeslices() Iterable[tuple[str, str, float]] [source]
Iterate over subannual timeslices defined on the Platform instance.
- Yields:
tuple
– The members of each tuple are:ID
Type
Description
name
str
Time slice name
category
str
Time slice category
duration
float
Time slice duration (fraction of year)
See also
- abstract get_units() list[str] [source]
Return all registered symbols for units of measurement.
See also
- classmethod handle_config(args: Sequence, kwargs: MutableMapping) dict[str, Any] [source]
OPTIONAL: Handle platform/backend config arguments.
Returns a
dict
to be stored in the configuration file. Thisdict
must be valid as keyword arguments to the__init__()
method of a Backend subclass.The default implementation expects both args and kwargs to be empty.
See also
- abstract has_solution(s: Scenario) bool [source]
Return True if Scenario s has been solved.
If
True
, model solution data is available from the Backend.
- abstract init(ts: TimeSeries, annotation: str) None [source]
Create a new TimeSeries (or Scenario) ts.
init may modify the
version
attribute of ts.If ts is a
Scenario
; the Backend must store theScenario.scheme
attribute.- Parameters:
annotation (
str
) – If ts is newly-created, the Backend must store this annotation with the TimeSeries.
- abstract init_item(s: Scenario, type: str, name: str, idx_sets: Sequence[str], idx_names: Sequence[str] | None) None [source]
Initialize an item name of type.
- Parameters:
type (
'set'
or'par'
or'equ'
or'var'
) –name (
str
) – Name for the new item.idx_sets (
collections.abc.Sequence
ofstr
) – If empty, a 0-dimensional/scalar item is initialized. Otherwise, a 1+-dimensional item is initialized.idx_names (
collections.abc.Sequence
ofstr
orNone
) – Optional names for the dimensions. If not supplied, the names of the idx_sets (if any) are used. If supplied, idx_names and idx_sets must be the same length.
- Raises:
ValueError – if any of the idx_sets is not an existing set in the Scenario; if idx_names and idx_sets are not the same length.
- abstract is_default(ts: TimeSeries) bool [source]
Return
True
if ts is the default version for its (model, scenario).See also
- abstract item_delete_elements(s: Scenario, type: str, name: str, keys) None [source]
Remove elements of item name.
- Parameters:
type (
'par'
or'set'
) –name (
str
) –keys (
collections.abc.Iterable
ofcollections.abc.Iterable
ofstr
) – If name is indexed by other set(s), then the number of elements of each key in keys, and their contents, must match the index set(s). If name is a basic set, then each key must be a list containing a single str, which must exist in the set.
See also
- abstract item_get_elements(s: Scenario, type: Literal['equ', 'par', 'set', 'var'], name: str, filters: dict[str, list[Any]] | None = None) dict[str, Any] | Series | DataFrame [source]
Return elements of item name.
- Parameters:
type (
str
) – Type of the item.name (
str
) – Name of the item.filters (
dict
, optional) –If provided, a mapping from dimension names (class:str) to allowed values along that dimension (
list
).item_get_elements must silently accept values that are not members of the set indexing a dimension. Elements which are not
str
must be handled as equivalent to their string representation; that is, item_get_elements must return the same data forfilters={'foo': [42]}
andfilters={'foo': ['42']}
.
- Returns:
pandas.Series
– When type is ‘set’ and name an index set (not indexed by other sets).dict
– When type is ‘equ’, ‘par’, or ‘var’ and name is scalar (zero- dimensional). The value has the keys ‘value’ and ‘unit’ (for ‘par’) or ‘lvl’ and ‘mrg’ (for ‘equ’ or ‘var’).pandas.DataFrame
– For mapping sets, or all 1+-dimensional values. The dataframe has one column per index name with dimension values; plus the columns ‘value’ and ‘unit’ (for ‘par’) or ‘lvl’ and ‘mrg’ (for ‘equ’ or ‘var’).
- Raises:
KeyError – If name does not exist in s.
- abstract item_index(s: Scenario, name: str, sets_or_names: str) list[str] [source]
Return the index sets or names of item name.
- abstract item_set_elements(s: Scenario, type: str, name: str, elements: Iterable[tuple[Any, Optional[float], Optional[str], Optional[str]]]) None [source]
Add keys or values to item name.
- Parameters:
type (
'par'
or'set'
) –name (
str
) – Name of the items.elements (
collections.abc.Iterable
oftuple
) –The members of each tuple are:
ID
Type
Description
key
str or list of str or None
Set elements or value indices
value
float or None
Parameter value
unit
str or None
Unit symbol
comment
str or None
Description of the change
If name is indexed by other set(s), then the number of elements of each key, and their contents, must match the index set(s). When type is ‘set’, value and unit must be
None
.
- Raises:
ValueError – If elements contain invalid values, e.g. key values not in the index set(s).
Exception – If the Backend encounters any error adding the elements.
See also
- abstract last_update(ts: TimeSeries) str | None [source]
Return the date of the last modification of the ts, if any.
- abstract list_items(s: Scenario, type: str) list[str] [source]
Return a list of names of items of type.
- Parameters:
type (
'set'
or'par'
or'equ'
) –
- open_db() None [source]
OPTIONAL: (Re-)open database connection(s).
A backend may connect to a database server. This method opens the database connection if it is closed.
- preload(ts: TimeSeries) None [source]
OPTIONAL: Load ts data into memory.
- read_file(path: PathLike, item_type: ItemType, **kwargs) None [source]
OPTIONAL: Read Platform, TimeSeries, or Scenario data from file.
A backend may implement read_file for one or more combinations of the path and item_type methods. For all other combinations, it must raise
NotImplementedError
.The default implementation supports:
path ending in ‘.xlsx’, item_type is ItemType.MODEL: read a single Scenario given by
kwargs['filters']['scenario']
from file, usings_read_excel()
.
- Parameters:
path (
os.PathLike
) –File for input. The filename suffix determines the input format:
Suffix
Format
.csv
Comma-separated values
.gdx
GAMS data exchange
.xlsx
Microsoft Office Open XML spreadsheet
item_type (
ItemType
) – Type(s) of items to read.
- Raises:
ValueError – If ts is not None and ‘scenario’ is a key in filters.
NotImplementedError – If input of the specified items from the file format is not supported.
See also
- abstract remove_meta(names: list, model: str | None, scenario: str | None, version: int | None) None [source]
Remove metadata attached to a target.
- Parameters:
- Raises:
ValueError – on unsupported (model, scenario, version) combinations.
See also
- abstract run_id(ts: TimeSeries) int [source]
Return the run ID of the ts.
- abstract set_as_default(ts: TimeSeries) None [source]
Set the current
TimeSeries.version
as the default.See also
- abstract set_data(ts: TimeSeries, region: str, variable: str, data: dict[int, float], unit: str, subannual: str, meta: bool) None [source]
Store data.
- abstract set_doc(domain: str, docs) None [source]
Save documentation to database
- Parameters:
domain (
str
) – Documentation domain, e.g. model, scenario, etc.docs (
dict
orcollections.abc.Iterable
oftuple
) – Dictionary or tuple array containing mapping between name of domain object (e.g. model name) and string representing fragment of documentation.
- abstract set_geo(ts: TimeSeries, region: str, variable: str, subannual: str, year: int, value: str, unit: str, meta: bool) None [source]
Store time series geodata.
- set_log_level(level: int) None [source]
OPTIONAL: Set logging level for the backend and other code.
The default implementation has no effect.
See also
- abstract set_meta(meta: dict, model: str | None, scenario: str | None, version: int | None) None [source]
Set metadata on a target.
- Parameters:
- Raises:
ValueError – on unsupported (model, scenario, version) combinations.
See also
- abstract set_node(name: str, parent: str | None = None, hierarchy: str | None = None, synonym: str | None = None) None [source]
Add a node name to the Platform.
This method must have one of two effects, depending on the arguments:
With parent and hierarchy: name is added as a child of parent in the named hierarchy.
With synonym: synonym is added as an alias for name.
- Parameters:
See also
- abstract set_timeslice(name: str, category: str, duration: float) None [source]
Add a subannual time slice to the Platform.
- Parameters:
See also
- abstract set_unit(name: str, comment: str) None [source]
Add a unit of measurement to the Platform.
- Parameters:
See also
- write_file(path: PathLike, item_type: ItemType, **kwargs) None [source]
OPTIONAL: Write Platform, TimeSeries, or Scenario data to file.
A backend may implement write_file for one or more combinations of the path and item_type methods. For all other combinations, it must raise
NotImplementedError
.The default implementation supports:
path ending in ‘.xlsx’, item_type is either
MODEL
orSET
|PAR
: write a single Scenario given bykwargs['filters']['scenario']
to file usings_write_excel()
.
- Parameters:
path (
os.PathLike
) – File for output. The filename suffix determines the output format.item_type (
ItemType
) – Type(s) of items to write.
- Raises:
ValueError – If ts is not None and ‘scenario’ is a key in filters.
NotImplementedError – If output of the specified items to the file format is not supported.
See also
- class ixmp.backend.base.CachingBackend(cache_enabled=True)[source]
Backend with additional features for caching data.
CachingBackend stores cache values for multiple
TimeSeries
/Scenario
objects, and for multiple values of a filters argument.Subclasses must call
cache()
,cache_get()
, andcache_invalidate()
as appropriate to manage the cache; CachingBackend does not enforce any such logic.- _cache: dict[tuple, object] = {}[source]
Cache of values. Keys are given by
_cache_key()
; values depend on the subclass’ usage of the cache.
- _cache_hit: dict[tuple, int] = {}[source]
Count of number of times a value was retrieved from cache successfully using
cache_get()
.
- classmethod _cache_key(ts: TimeSeries, ix_type: str | None, name: str | None, filters: dict[str, collections.abc.Hashable] | None = None) tuple[collections.abc.Hashable, ...] [source]
Return a hashable cache key.
ixmp filters (a
dict
oflist
) are converted to a unique id that is hashable.- Returns:
A hashable key with 4 elements for ts, ix_type, name, and filters.
- Return type:
- cache(ts: TimeSeries, ix_type: str, name: str, filters: dict, value: Any) bool [source]
Store value in cache.
- cache_get(ts: TimeSeries, ix_type: str, name: str, filters: dict) Any | None [source]
Retrieve value from cache.
The value in
_cache
is copied to avoid cached values being modified by user code._cache_hit
is incremented.- Raises:
KeyError – If the key for ts, ix_type, name and filters is not in the cache.
- cache_invalidate(ts: TimeSeries, ix_type: str | None = None, name: str | None = None, filters: dict | None = None) None [source]
Invalidate cached values.
With all arguments given, single key/value is removed from the cache. Otherwise, multiple keys/values are removed:
ts only: all cached values associated with the
TimeSeries
orScenario
object.ts, ix_type, and name: all cached values associated with the item, whether filtered or unfiltered.
- del_ts(ts: TimeSeries)[source]
Invalidate cache entries associated with ts.
Backend API.
- ixmp.backend.FIELDS = {'get_nodes': ('region', 'mapped_to', 'parent', 'hierarchy'), 'get_scenarios': ('model', 'scenario', 'scheme', 'is_default', 'is_locked', 'cre_user', 'cre_date', 'upd_user', 'upd_date', 'lock_user', 'lock_date', 'annotation', 'version'), 'get_timeslices': ('name', 'category', 'duration'), 'ts_get': ('region', 'variable', 'unit', 'subannual', 'year', 'value'), 'ts_get_geo': ('region', 'variable', 'subannual', 'year', 'value', 'unit', 'meta'), 'write_file': ('MODEL', 'SCENARIO', 'VERSION', 'VARIABLE', 'UNIT', 'REGION', 'META', 'SUBANNUAL', 'YEAR', 'VALUE')}[source]
Lists of field names for tuples returned by Backend API methods.
The key “write_file” refers to the columns appearing in the CSV output from
export_timeseries_data()
when usingJDBCBackend
.Todo
Make this consistent with other dimension orders and with
IAMC_IDX
.
- ixmp.backend.IAMC_IDX: list[Union[str, int]] = ['model', 'scenario', 'region', 'variable', 'unit'][source]
Partial list of dimensions for the IAMC data structure, or “IAMC format”. This omits “year” and “subannual” which appear in some variants of the structure, but not in others.
- class ixmp.backend.ItemType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]
Type of data items in
ixmp.TimeSeries
andixmp.Scenario
.
Common input/output routines for backends
- ixmp.backend.io.EXCEL_MAX_ROWS = 1048576[source]
Maximum number of rows supported by the Excel file format. See
to_excel()
and Scenario/model data.
- ixmp.backend.io.maybe_init_item(scenario, ix_type, name, new_idx, path)[source]
Call
init_set()
,init_par()
, etc. if possible.Logs an intelligible warning and then raises ValueError in two cases:
the new_idx is ambiguous, e.g. containing index names that cannot be used to infer index sets, or
an existing item has index names that are different from new_idx.
- ixmp.backend.io.s_read_excel(be, s, path, add_units=False, init_items=False, commit_steps=False)[source]
Read data from a Microsoft Excel file at path into s.
See also