

The MESSAGEix framework

MESSAGEix is a versatile, dynamic systems-optimization modelling framework developed by the IIASA Energy, Climate, and Environment (ECE) Program [1] since the 1980s.

This is the documentation for message_ix, a Python package that ties together all components of the framework.
message_ix and ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] are free and open source, licensed under the APACHE 2.0 open-source license [https://github.com/iiasa/message_ix/blob/main/LICENSE].

	For the scientific reference of the framework, see Huppmann et al. (2019) [3].

	For an overview and recent publications related to the specific MESSAGEix-GLOBIOM global model instance used at the IIASA ECE Program, see the MESSAGEix-GLOBIOM documentation [http://data.ene.iiasa.ac.at/message-globiom/].

Getting started

Modeling using MESSAGEix requires domain knowledge, understanding of certain research methods, and scientific computing skills.

	Prerequisite knowledge & skills gives a list of these items for formal and self-guided learning.

Then, continue with the:

	MESSAGEix model & framework detailed description and feature list.

	Installation of the software and essential dependencies.

	Tutorials for new users that demonstrate the basic features of the framework.

	Usage of MESSAGEix in academic publications, research projects, and derived tools.

[image: _images/ix_features.svg]
Features of ixmp, message_ix, and related packages [3]

Mathematical specification

These pages provide comprehensive description of the variables and equations in
the core MESSAGEix mathematical implementation.

	Sets and mappings

	Years, periods, and time slices

	Parameter definition

	MESSAGE core formulation

	Solve statement workflow

	Standard output reports

	Auxiliary investment parameters

	MACRO core formulation

Developing MESSAGEix models

Developing a valid, scientific MESSAGEix model requires careful use of the framework features.
This section provides guidelines for how to make some common model design choices.

	Efficiency - output- vs. input defined technologies

	Add model years to an existing Scenario

	Postprocessing and reporting

	Debugging and data validation

	Calibrate and tune MESSAGE-MACRO

Using, getting help, and contributing

Everyone is encouraged to use the framework to develop energy system and integrated assessment models!

	Python API

	Usage in R via reticulate

	What’s New —release history and migration/upgrade notes.

	User guidelines and notice —including how to properly cite the framework and software in scientific research.

	Contributing to development —we welcome enhancements to the framework itself that enable new features across all models.

	Sharing publications, projects, and tools—we invite the sharing of the usage of the MESSAGEix framework.

	Frequently asked questions

	References

Have a question? Check…

	…on GitHub:

	Join an existing discussion [https://github.com/iiasa/message_ix/discussions] or start a new one with your question.

	Search current issues [https://github.com/iiasa/message_ix/issues?q=is:issue], or open a new one to report a bug in the code.

	…the Frequently asked questions.

	…the message_ix Google Group, either online [https://groups.google.com/d/forum/message_ix] or via e-mail at <message_ix@googlegroups.com>.

[1]
Known as the “Energy Program” until 2020-12-31.

Prerequisite knowledge & skills

Modeling using MESSAGEix requires domain knowledge, understanding of certain research methods, and scientific computing skills.
This page lists these prerequisite items, grouped by different use cases.

	What is my use case?

	Basic usage

	Domain knowledge

	Scientific computing skills

	Advanced usage

	Domain knowledge

	Scientific computing skills

Where possible, suggested learning materials are linked.
In some cases, there are multiple options. Keep in mind that the right choice of learning materials and the time required depends on the context (e.g. formal classroom learning with an instructor vs. self-guided learning), level of prior knowledge, and learning goals.

What is my use case?

There are many different use cases for MESSAGEix.
This page currently distinguishes between “basic” and “advanced”:

	Basic usage

	Advanced usage

	Install the released version of message_ix.

	Install the development version (source code).

	Use a laptop/desktop computer.

	Use cloud computing/HPC servers.

	Store data on your local machine.

	Store data in a shared database.

	Run/modify the tutorial notebooks.

	Build large models from scratch.

	
	Collaborate on MESSAGEix-GLOBIOM.

	Use the mathematical formulation as-is.

	Modify the MESSAGE equations.

	Use the message_ix Python/R code.

	Contribute or request new features.

Basic usage

Domain knowledge

You should be able to:

	Understand mathematical optimization, linear programming, and/or the calculus underlying these.

	Understand concepts including:

	Energy systems, including their components: resources, supply-side technologies, demand and end-use.

	Levels (such as primary or secondary energy) in an energy system.

	Efficiency of energy use or transformation.

	Costs, including the distinction between fixed costs, variable costs, and investment costs.

Scientific computing skills

You should be able to:

	Install and uninstall software on your operating system (OS): one of Linux, Windows, or macOS.

	Use a command line on your OS to navigate directories and files, run commands, and view their output.

	Modify environment variables on your OS.

	Write simple programs in Python or R, including:

	Understand concepts including: variables, functions, and arguments.

	Use control flow structures such as if statements and various types of loops.

	Access and read the documentation for the core language.

	Use a search engine to find code examples and to diagnose error messages.

For Python, Dive Into Python [https://diveinto.org/python3/table-of-contents.html] is one beginner resource.
Many free and paid online courses are available.

	Understand the concept of a software package, software release, version number (in particular the concept of semantic versioning [https://semver.org]), deprecation.

See Versions and releases for specific practices used for message_ix.

	Use the Anaconda Navigator [https://docs.anaconda.com/anaconda/navigator/] graphical interface or the conda command-line interface (documentation [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html#installing-packages]) to install, uninstall, upgrade, and check the versions of Python packages.
Understand the concept of conda environments [https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]; create, activate, switch, and remove environments.

	Understand or learn the basic functionality of Python data science packages, including pandas.

	Introductory tutorials [https://pandas.pydata.org/docs/getting_started/index.html#intro-to-pandas] for pandas.

	Use a Jupyter notebook to run Python or R code, including: start the notebook server; open, restart, and close notebooks; create and edit cells.

	Jupyter notebook [https://jupyter-notebook.readthedocs.io/en/stable/notebook.html] official documentation.

	Video introductions to the notebook.
Example 1 [https://www.youtube.com/watch?v=jZ952vChhuI] by Michael Fudge (English, 7 minutes)
Example 2 [https://www.youtube.com/watch?v=HW29067qVWk] by Corey Schafer (English, 30 minutes), both on YouTube.
Many are available on other platforms.

	An in-depth tutorial [https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook] by Karlijn Williams on DataCamp.

Advanced usage

The following items may be more or less.

Domain knowledge

You should be able to:

	Understand concepts including:

	Capacity factor of a power-generating technology.

	Deprecation.

Scientific computing skills

You should be able to:

	Interact with a server or ‘headless’ computer, i.e. one without a graphical interface, over the command line, using SSH.

	Use the pip command-line interface (documentation [https://pip.pypa.io/en/stable/user_guide/#installing-packages]) to install, uninstall, upgrade, and check the versions of Python packages.

	Use the Git version control system and the git command-line tool to clone repositories, pull, fetch, create branches, and push.
For contributing to development, you should know how to:

	git merge [https://git-scm.com/docs/git-merge], i.e. bring all updates from the main branch into your PR branch, giving you a chance to fix conflicts and make a new commit.

	git rebase [https://git-scm.com/docs/git-rebase], i.e. replay your PR branch commits one-by-one, starting from the tip of the main branch (rather than the original starting commit).

Optionally, do these things via a graphical program such as GitHub Desktop.

	The free Pro Git book [https://git-scm.com/book/en/v2].

	Interactive learning tools on try.github.io [http://try.github.io/].

	Understand and interact with repositories and issues on GitHub, including:

	Find and read the list of issues for a repository.

	Search within one repository or across all of GitHub.

	Use GitHub’s formatting to produce legible descriptions of code and code errors.

	Understand concepts including: pull request, merge, merge conflict, assign, review.

See:

	Documentation for the GitHub website [https://docs.github.com/en/github]

	Short introduction to the Github ‘flow’ [https://guides.github.com/introduction/flow/], which describes a pull request and how it is used.

	Interactive tools in the Learning Lab [https://lab.github.com/].

	Provide a complete and explicit description of a software error message and how to reproduce it.

	Read and understand GAMS code.

MESSAGEix model & framework

MESSAGEix is a framework that can be used to develop and run many different
models, each describing a different energy system. Models in the MESSAGEix
framework can range from very simple (as in the Tutorials) to highly
detailed (e.g. the MESSAGE-GLOBIOM global model).
The framework can be applied to analyse scenarios of the energy system transformation under technical-engineering constraints and political-societal considerations.

Framework components

[image: _images/ix_components.png]

Components and their interlinkages in the ix modeling platform ([3]): web-based user interface, scientific
programming interface, modeling platform, database backend, implementation
of the MESSAGEix mathematical model formulation.

MESSAGE is a specific mathematical formulation of a model developed for strategic energy planning and integrated assessment of energy-engineering-economy-environment systems (E4).
The formulation included in message_ix is a re-implementation and extension of “MESSAGE V” (Messner and Strubegger, 1995 [10]), the integrated assessment model developed at IIASA since the 1980s.
The optimization model can be linked to the general-equilibrium MACRO model to incorporate feedback between prices and demand levels for energy and commodities.
The message_ix package includes code for both MESSAGE, MACRO, and the MESSAGE-MACRO link.
These are written in the GAMS [http://www.gams.com] mathematical programming language.
message_ix uses GAMS to compute the numerical solution of a model instance.

These models are built upon on the ix modeling platform (ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp]), software that provides a data warehouse for high-powered numerical scenario analysis.
The platform supports an efficient workflow between original input data sources, the implementation of the mathematical model formulation, and the analysis of numerical results.
The platform can be accessed via application programming interfaces (API) in the scientific programming languages Python and R, as well as a web-based user interface.
The platform also handles outputting model data (for MESSAGE, MACRO, or user-defined models) to the GAMS .gdx file format, and invoking GAMS code such as the MESSAGE implementation.

Supported features

The framework allows direct and explicit representation of:

	Energy technologies with arbitrary inputs and outputs, that can be used
to describe a “reference energy system,” including:

	the fuel supply chain,

	conversion technologies from primary to secondary energy forms,

	transmission and distribution (e.g. of electricity), and

	final demand for energy services.

	Vintaging of capacity, early retirement and decommissioning of
technologies.

	System integration of variable renewable energy sources (based on
Sullivan et al., 2013 [11] and Johnson et al., 2016
[4]).

	Soft relaxation of dynamic constraints on new capacity and activity
(Keppo and Strubegger, 2010 [5]).

	Perfect-foresight and dynamic-recursive (myopic) solution algorithms.

Running a model

There are three ways to run a MESSAGEix model:

	Via Python or R APIs using the packages/libraries ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] and
message_ix, calling message_ix.Scenario.solve(). (See the
Tutorials.)

	Using the file MESSAGE_master.gms, where the scenario name (i.e., the
gdx input file), the optimization horizon (perfect foresight or myopic/
rolling-horizon version), and other options can be defined explicitly.

This approach is recommended for users who prefer to work via GAMS IDE or
other text editors to set the model specifications.

	Directly from the command line calling the file MESSAGE_run.gms (see the
auto-doc page). The scenario name and other arguments can be passed as
command line parameters:

$ gams MESSAGE_run.gms --in="<data-file>" --out="<output-file>"

Auto-generated documentation for the model run scripts is provided:

	Run script for MESSAGEix (stand-alone)

	Run script for MESSAGEix and MACRO

Note

This page is generated from inline documentation in MESSAGE_run.gms.

Run script for MESSAGEix (stand-alone)

This is MESSAGEix version 3.8.0. The version number must match the version number
of the ixmp MESSAGE-scheme specifications used for exporting data and importing results.

This file contains the workflow of a MESSAGEix-standalone run. It can be called:

	Via the scientific programming API’s using the packages/libraries ixmp and message_ix,
calling the method solve() of the message_ix.Scenario class (see the tutorials).

	using the file MESSAGE_master.gms with the option $SETGLOBAL macromode "none",
where the input data file name and other options are stated explicitly, or

	directly from the command line, with the input data file name
and other options specific as command line parameters, e.g.:

``gams MESSAGE_run.gms --in="<data-file>" [--out="<output-file>"]``

By default, the data file (in gdx format) should be located in the model/data folder
and be named in the format MsgData_<name>.gdx. Upon completion of the GAMS execution,
a results file <output-file> will be written
(or model\output\MsgOutput.gdx if --out is not provided).

Note

This page is generated from inline documentation in MESSAGE-MACRO_run.gms.

Run script for MESSAGEix and MACRO

This is MESSAGEix-MACRO version 3.8.0. The version number must match the version number
of the ixmp MESSAGE-scheme specifications used for exporting data and importing results.

This file contains the workflow of a MESSAGEix-MACRO run. It can be called:

	Via the scientific programming API’s using the packages/libraries ixmp and message_ix,
calling the method solve() of the message_ix.Scenario class (see the tutorials).

	using the file MESSAGE_master.gms with the option $SETGLOBAL macromode "linked",
where the input data file name and other options are stated explicitly, or

	directly from the command line, with the input data file name
and other options specific as command line parameters, e.g.:

``gams MESSAGE-MACRO_run.gms --in="<data-file>" [--out="<output-file>"]``

By default, the data file (in gdx format) should be located in the model/data folder
and be named in the format MsgData_<name>.gdx. Upon completion of the GAMS execution,
a results file <output-file> will be written
(or model\output\MsgOutput.gdx if --out is not provided).

Installation

	Install system dependencies

	GAMS (required)

	Graphviz (optional)

	Install MESSAGEix

	Using Anaconda

	Using pip

	From source

	Check that installation was successful

	Install R and reticulate

	Common issues

	“No JVM shared library file (jvm.dll) found”

	“No module named ‘pyam’”

	Copy GAMS model files for editing

Ensure you have first read the prerequisites for understanding and using MESSAGEix.
These include specific points of knowledge that are necessary to understand these instructions and choose among different installation options.

Install system dependencies

GAMS (required)

MESSAGEix requires GAMS [http://www.gams.com].

	Download GAMS for your operating system; either the latest version [https://www.gams.com/download/] or, for users not familiar with GAMS licenses, version 29 [https://www.gams.com/29/] (see note below).

	Run the installer.

	Ensure that the PATH environment variable on your system includes the path to the GAMS program:

	on Windows, in the GAMS installer…

	Check the box labeled “Use advanced installation mode.”

	Check the box labeled “Add GAMS directory to PATH environment variable” on the Advanced Options page.

	on macOS, in the GAMS installer…

	When prompted to specify the “Installation Type” (step 3 of the installation process), select “Customise”.

	Check the box labeled “Add GAMS to PATH”.

If this option is not available see instructions below.

	on other platforms (macOS or Linux), add the following line to a file such as ~/.bash_profile (macOS), ~/.bashrc, or ~/.profile:

$ export PATH=$PATH:/path/to/gams-directory-with-gams-binary

Note

MESSAGE-MACRO and MACRO require GAMS 24.8.1 or later (see MACRO.GAMS_min_version)
The latest version is recommended.

GAMS is proprietary software and requires a license to solve optimization problems.
To run both the message_ix and ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] tutorials and test suites, a “free demonstration” license is required; the free license is suitable for these small models.
Versions of GAMS up to version 29 [https://www.gams.com/29/] include such a license with the installer; since version 30, the free demo license is no longer included, but may be requested via the GAMS website.

Note

If you only have a license for an older version of GAMS, install both the older and the latest versions.

Graphviz (optional)

Reporter.visualize() uses Graphviz [https://www.graphviz.org/], a program for graph visualization.
Installing message_ix causes the graphviz [https://graphviz.readthedocs.io] Python package to be installed.
If you want to use visualize() or run the test suite, the Graphviz program itself must also be installed; otherwise it is optional.

If you install MESSAGEix Using Anaconda, Graphviz is installed automatically via its conda-forge package [https://anaconda.org/conda-forge/graphviz].
For other methods of installation, see the Graphviz download page [https://www.graphviz.org/download/] for downloads and instructions for your system.

Install MESSAGEix

After installing GAMS, we recommend that new users install Anaconda, and then use it to install MESSAGEix.
Advanced users may choose to install MESSAGEix using pip, or from source code (next sections).
If you are not doing this, then skip those sections.

Using Anaconda

Note

This section is also available as a narrated video on the IIASA YouTube channel [https://www.youtube.com/user/IIASALive].
If you are a beginner, you may want to watch the video before attempting the installation yourself.

 Tutorials

Tutorials

To get started with MESSAGEix, the following tutorials are provided as
Jupyter notebooks [https://jupyter.org/], which combine code, sample output,
and explanatory text.

A static, non-interactive version of each notebook can be viewed online using
the links below. In order to execute the tutorial code or make modifications,
read the Preparation section, next.

Preparation

The tutorials refer to terms and concepts from energy systems research (i.e.
how they are measured and modeled mathematically) and to scientific programming
languages and tools (i.e. Python/R language syntax and popular packages in
either language)—however, they do not provide a full introduction to these.
Read the pre-requisite knowledge documentation page for an
outline of things you should learn first, in order to fully understand the
tutorials.

Getting tutorial files

If you installed MESSAGEix from source, all notebooks are in the tutorial
directory.

If you installed MESSAGEix using Anaconda or pip, download the
notebooks using the message-ix command-line program. In a command prompt:

$ message-ix dl /path/to/tutorials

Note

If you installed message_ix into a specific conda environment, that
environment must be active in order for your system to find the
message-ix command-line program, and also to run the Jupyter notebooks.
Activate the environment as described [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment] in the conda documentation; for
instance, if you used the name message_env:

$ conda activate message_env

Note

By default, the tutorials matching your installed version of MESSAGEix are
downloaded. To download a different version, add e.g. --tag v1.2.0 to
the above command. To download the tutorials from the development version,
add --branch main.

Running tutorials

Using Anaconda

The nb_conda package is required. It should be installed by default with
Anaconda. If it was not, install it:

$ conda install nb_conda

	Open “Jupyter Notebooks” from Anaconda’s “Home” tab (or directly if you have
the option).

	Choose and open a tutorial notebook.

	Each notebook requires a kernel that executes code interactively. Check
that the kernel matches your conda environment, and if necessary change
kernels with the menu, e.g. Kernel → Change Kernel → Python
[conda root].

From the command line

	Navigate to the tutorial folder. For instance, if message-ix dl was used
above:

$ cd /path/to/tutorials

	Start the Jupyter notebook:

$ jupyter notebook

Westeros Electrified

The Westeros Electrified tutorial series demonstrates how to:

	create a minimal model that represents a very simple energy system,

	add extra detail / constraints to this representation, and

	post-process (analyze, visualize, or ‘report’) the results.

The following list groups the tutorials by topic.
For new or beginner users, the following sequence of six tutorials (also marked
with ⭐, below) requires the lowest amount of background knowledge and is
sufficient for a basic introduction:

1 — 2.1 — 2.2 — 3.1 — 3.2.1

The remaining tutorials require deeper energy systems knowledge; greater
scientific programming skills; and/or relate to more advanced uses of the
framework, such as used in global research applications of MESSAGEix.

	⭐ Build the baseline model (https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_baseline.ipynb).

	Add extra detail and constraints to the model:

	⭐ Emissions:

	Introduce emissions and a bound on the emissions
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_emissions_bounds.ipynb).

	Introduce taxes on emissions
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_emissions_taxes.ipynb).

	⭐ Supply of resources:

Add a fossil-resource supply curve for the coal power plant,
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_fossil_resource.ipynb).

	Renewables and integration constraints:

	Represent both coal and wind electricity using a “firm capacity”
formulation (https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_firm_capacity.ipynb): each
generation technology can supply some firm capacity, but the variable,
renewable technology (wind) supplies less than coal.

	Represent coal and wind electricity using a different, “flexibility
requirement” formulation
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_flexible_generation.ipynb), wherein wind
requires and coal supplies flexibility.

	Add a renewable-resource supply curve for the wind power plant,
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_renewable_resource.ipynb).

	Sub-annual time resolution:

Represent variability in energy supply and demand by adding sub-annual
time resolution, e.g. winter and summer
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_seasonality.ipynb).

	Constraints:

	Using share constraints to depict policies, i.e. require renewables to
supply a certain share of total electricity generation
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_share_constraint.ipynb).

	Add soft constraints for activity related dynamic constraints
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_soft_constraints.ipynb

	Add-on technologies:

Add the possibility of co-generation for the coal power plant, by
allowing it to produce heat via a passout-turbine
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_addon_technologies.ipynb).

	Use parameters to represent the historical characteristics of the energy
system (https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_historical_new_capacity.ipynb).

	Modeling of a multi-node energy system and representing trade between nodes
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_multinode.ipynb).

	Use other features of message_ix and ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp]:

	⭐ After the MESSAGE model has solved, use the message_ix.report
module to ‘report’ results, e.g. do post-processing, plotting, and other
calculations (https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_report.ipynb).

	Build the baseline scenario using data stored in Excel files to
populate sets and parameters:

	⭐ Export data to file and import the data to create a new scenario
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_baseline_using_xlsx_import_part1.ipynb).

	Import and combine data from multiple files to create a new scenario
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/westeros/westeros_baseline_using_xlsx_import_part2.ipynb).

Austrian energy system

These tutorials demonstrate a stylized representation of a national electricity
sector model, with several fossil and renewable power plant types.

	Prepare the base model version, in Python
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/Austrian_energy_system/austria.ipynb)
or in R (https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/Austrian_energy_system/R_austria.ipynb).

	Plot results, in Python
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/Austrian_energy_system/austria_load_scenario.ipynb)
or in R (https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/Austrian_energy_system/R_austria_load_scenario.ipynb).

	Run a single policy scenario
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/Austrian_energy_system/austria_single_policy.ipynb).

	Run multiple policy scenarios. This tutorial has two notebooks:

	an introduction with some exercises
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/Austrian_energy_system/austria_multiple_policies.ipynb), and

	completed code for the exercises
(https://github.com/iiasa/message_ix/blob/v3.8.0/tutorial/Austrian_energy_system/austria_multiple_policies-answers.ipynb).

Code reference

The module message_ix.util.tutorial contains some helper code used to simplify the tutorials; see also report.operator.stacked_bar().

	
message_ix.util.tutorial.prepare_plots(rep: Reporter, input_costs='$/GWa') → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/util/tutorial.py#L20-L78]

	Prepare rep to generate plots for tutorial energy models.

Makes available several keys:

	plot activity

	plot demand

	plot extraction

	plot fossil supply curve

	plot capacity

	plot new capacity

	plot prices

To control the contents of each plot, use set_filters() on rep.

	
message_ix.util.tutorial.solve_modified(base: Scenario, new_name: str [https://docs.python.org/3/library/stdtypes.html#str])[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/util/tutorial.py#L80-L111]

	Context manager for a cloned scenario.

At the end of the block, the modified Scenario yielded by solve_modified() is
committed, set as default, and solved. Use in a with: statement to make small
modifications and leave a variable in the current scope with the solved scenario.

Examples

>>> with solve_modified(base_scen, "new name") as s:
... s.add_par(...) # Modify the scenario
... # `s` is solved at the end of the block

	Yields:

	Scenario – Cloned from base, with the scenario name new_name and no solution.

 Usage in publications, projects, and tools

Usage in publications, projects, and tools

This page contains information on usage and applications of the MESSAGEix framework in academic publications and research projects.
It also lists tools that have been developed by researchers beyond the IIASA ECE program to extend or complement MESSAGEix.

	Publications

	Tools

	Projects

Because the model formulation is flexible, users (individuals and groups) of MESSAGEix have built a wide variety of concrete models to study research questions in a range of domains and fields.
Model outputs are also used in a variety of ways, notably to inform policy-makers and other stakeholders facing energy systems challenges and decisions.

The list is not exhaustive, but provided to illustrate the wide range of possible applications of MESSAGEix for current and prospective users, and also to encourage knowledge exchange within the MESSAGEix user community.

To add your publication, tool, or project to this page, see Sharing publications, projects, and tools.

Publications

The following is a selection of academic publications in which MESSAGEix was used to carry out energy systems research.
For each, the spatial scope/resolution, keywords and specific usage of MESSAGEix are described.

Role of energy storage in energy and water security in Central Asia

[image: _images/10.1016-j.est.2022.104587.JPG]

Zakeri et al. [12]

	Spatial: Regional (Central Asia), multi-country including Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan

	Keywords: Energy storage, seasonal pumped hydropower storage, water management, renewable energy systems, energy policy, electricity storage, energy model

	Usage: Model the energy-water system of Central Asia with 12 sub-annual time slices and analyze the role of energy and water storage solutions.

	Data and code: Data and scripts for building the model are openly available on Github [https://github.com/iiasa/central-asia-storage]

Central Asia has faced major energy and water security challenges. Technic… Read more → [https://doi.org/10.1016/j.est.2022.104587]

Climate mitigation scenarios with persistent COVID-19-related energy demand changes

[image: _images/41560_2021_904.webp]

Kikstra et al. [6]

	Spatial: Global, 11-region aggregation [https://docs.messageix.org/projects/models/en/latest/pkg-data/node.html#r11]

	Keywords: Climate-change mitigation, energy and behaviour, energy supply and demand

	Usage: Capture global economy, energy and climate dynamics and feedbacks in the medium-to-long term, including regionally heterogeneous responses to the COVID-19 emergency.

The COVID-19 pandemic caused radical temporary breaks with past energy use… Read more → [https://www.nature.com/articles/s41560-021-00904-8]

Deep seawater cooling and desalination: Combining seawater air conditioning and desalination

[image: _images/10.1016-j.scs.2021.103257.jpg]

Hunt et al. [2]

	Spatial: Malé, Maldives

	Keywords: Building cooling, industrial cooling, energy efficiency, seawater air conditioning, low temperature thermal desalination, vertical farming

	Usage: Simulate Malé´s cooling and water services demand and optimize the renewable energy supply.

In tropical climates, the energy consumed by heating, ventilation and air… Read more → [https://www.sciencedirect.com/science/article/pii/S2210670721005333]

Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals

[image: _images/10.1038-s41560-018-0179-z.webp]

McCollum et al. [8]

	Spatial: Global

	Keywords: Energy and society, finance, socioeconomic scenarios

	Usage: Calculate SDG investment needs with a diverse set of approaches within a multi-model analysis.

Low-carbon investments are necessary for driving the energy system… Read more → [https://www.nature.com/articles/s41560-018-0179-z]

A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies

[image: _images/10.1038-s41560-018-0172-6.webp]

Grubler et al. [1]

	Spatial: Global

	Keywords: Energy modelling, socioeconomic scenarios

	Usage: Calculate the energy supply impacts by imposing three types of constraints.

Scenarios that limit global warming to 1.5 °C describe major… Read more → [https://www.nature.com/articles/s41560-018-0172-6]

Tools

MESSAGEix and ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] provide a robust feature set for modeling.
However, these features are general-purpose, so some users have developed additional tools that extend or complement MESSAGEix to serve specific use-cases or needs.

Note

It is not guaranteed that the tools listed in this section are maintained.

d2ix: A Model Input-Data Management and Analysis Tool for MESSAGEix

[image: _images/10.3390-en12081483.png]

Zipperle and Orthofer [13]

	Goal: Manageable, comprehensible, and traceable representation of input data.

	Features: Spreadsheet interface that enables presentation and editing of model input data in a concise form.

	GitHub: https://github.com/tum-ewk/d2ix

Bottom-up integrated assessment models, like MESSAGEix, depend on the… Read more → [https://www.mdpi.com/1996-1073/12/8/1483/htm]

Projects

For research projects of the IIASA Energy, Climate, and Environment Program that use MESSAGEix, visit https://iiasa.ac.at/web/ece/Projects.html.

 Sets and mappings

Note

This page is generated from inline documentation in MESSAGE/sets_maps_def.gms.

Sets and mappings

sets_maps_def.gms defines all sets and mappings used in MESSAGEix. The symbols in the Notation column of
the tables below are used in the equations of the mathematical formulation, while the set names appear in the GAMS
code.

Sets in the MESSAGEix implementation

	Set name

	Notation

	Explanatory comments

	node [1]

	\(n \in N\)

	Regions, countries, grid cells

	commodity

	\(c \in C\)

	Resources, electricity, water, land availability, etc.

	level

	\(l \in L\)

	Levels of the reference energy system or supply chain (primary, secondary, … , useful)

	grade

	\(g \in G\)

	Grades of resource quality in the extraction & mining sector

	technology [tec]

	\(t \in T\)

	
Technologies that use input commodities to produce outputs;

the short-hand notation “tec” is used in the GAMS implementation

	mode [2]

	\(m \in M\)

	Modes of operation for specific technologies

	emission

	\(e \in E\)

	Greenhouse gases, pollutants, etc.

	land_scenario

	\(s \in S\)

	Scenarios of land use (for land-use model emulator)

	land_type

	\(u \in U\)

	Land-use types (e.g., field, forest, pasture)

	year [year_all] [3] [4]

	\(y \in Y\)

	Periods, denoted by the final year, in the model horizon

	time [5]

	\(h \in H\)

	Subannual time periods (seasons, days, hours)

	shares [6]

	\(p \in P\)

	Set of constraints on shares of technologies and commodities

	relation [7]

	\(r \in R\)

	Names of generic relations (linear constraints)

	lvl_spatial

	
	Spatial hierarchy levels, e.g. global, region, country, or grid cell.

	lvl_temporal

	
	Temporal hierarchy levels, e.g. year, season, day, or hour.

	rating

	\(q \in Q\)

	Identifies the ‘quality’ of the renewable energy potential (rating of non-dispatchable
technologies relative to aggregate commodity use)

[1]
The set node includes spatial units across all levels of spatial disaggregation
(global, regions, countries, basins, grid cells).
The hierarchical mapping is implemented via the mapping set map_spatial_hierarchy.
This set always includes an element ‘World’ when initializing a MESSAGE-scheme message_ix.Scenario.

[2]
For example, high electricity or high heat production modes of operation for combined heat and power plants.

[3]
In the MESSAGEix implementation in GAMS, the set year_all denotes the “superset” of the entire
horizon (historical and model horizon), and the set year is a dynamic subset of year_all. This facilitates
an efficient implementation of the historical capacity build-up and the (optional) recursive-dynamic solution
approach. When working with a message_ix.Scenario via the scientific programming API, the set of all
periods is called year for a more concise notation. The specification of the model horizon is implemented
using the mapping set cat_year and the type “firstmodelyear”.

[4]
See Years, periods, and time slices.

[5]
The set time collects all sub-annual temporal units across all levels of temporal disaggregation.
In a MESSAGE-scheme ixmp.Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario], this set always includes an element “year”,
and the duration of that element is 1 (\(\text{duration_time}_{\text{'year'}} = 1\)).

[6]
A generic formulation of share constraints is implemented in MESSAGEix,
see Constraints on shares of technologies and commodities.

[7]
A generic formulation of linear constraints is implemented in MESSAGEix,
see Section of generic relations (linear constraints). These constraints can be used for testing and development,
but specific new features should be implemented by specific equations and parameters.

Index names

Where the same set is used 2 or more times to index multiple dimensions of the same parameter,
these dimensions are given names (called index names) that differ from the name of the set. The table below
contains a partial list of index names appearing in the documentation.

	Set

	Index name

	Description

	node

	node_dest

	Node to which a technology providers commodity output.

	node

	node_loc

	Node where a technology operates.

	node

	node_origin

	Node from which a technology receives commodity input.

Category types and mappings

This feature is used to easily implement aggregation across groups of set elements.
For example, by setting an upper bound over an emission type, the constraint enforces
that the sum over all emission species mapped to that type via the mapping set cat_emission
satisfies that upper bound.

	Set name

	Notation

	Explanatory comments

	level_resource (level) [8]

	\(l \in L^{\text{RES}} \subseteq L\)

	Levels related to fossil resources representation

	level_renewable (level) [8]

	\(l \in L^{\text{REN}} \subseteq L\)

	Levels related to renewables representation

	level_storage(level)

	\(l \in L^{\text{STOR}} \subseteq L\)

	Subsets of levels on which commodities are stored; excluded from commodity balances.

	type_node [9]

	\(\widehat{n} \in \widehat{N}\)

	Category types for nodes

	cat_node (type_node,node)

	\(n \in N(\widehat{n})\)

	Category mapping between node types and nodes (all nodes that are subnodes of node \(\widehat{n}\))

	type_tec [10]

	\(\widehat{t} \in \widehat{T}\)

	Category types for technologies

	cat_tec (type_tec,tec) [10]

	\(t \in T(\widehat{t})\)

	Category mapping between tec types and technologies (all technologies mapped to the category type_tec \(\widehat{t}\))

	inv_tec (tec) [11]

	\(t \in T^{\text{INV}} \subseteq T\)

	Specific subset of investment technologies (all technologies with investment decisions and capacity constraints)

	renewable_tec (tec) [12]

	\(t \in T^{\text{REN}} \subseteq T\)

	Specific subset of renewable-energy technologies (all technologies which draw their input from the renewable level)

	storage_tec(tec)

	\(t \in T^{\text{STOR}} \subseteq T\)

	Subset of technologies that are storage container technologies (reservoirs)

	addon(tec)

	\(t^a \in T^{A} \subseteq T\)

	Specific subset of technologies that are an add-on to other (parent) technologies

	type_addon

	\(\widehat{t^a} \in \widehat{T^A}\)

	Category types for add-on technologies (that can be applied mutually exclusive)

	cat_addon(type_addon,addon)

	\(t^a \in T^A(\widehat{t^a})\)

	Category mapping add-on technologies to respective add-on technology types (all add-on technologies mapped to the category type_addon \(\widehat{t}\))

	type_year

	\(\widehat{y} \in \widehat{Y}\)

	Category types for year aggregations

	cat_year(type_year,year_all)

	\(y \in Y(\widehat{y})\)

	Category mapping years to respective categories (all years mapped to the category type_year \(\widehat{y}\))

	type_emission

	\(\widehat{e} \in \widehat{E}\)

	Category types for emissions (greenhouse gases, pollutants, etc.)

	cat_emission (type_emission,emission)

	\(e \in E(\widehat{e})\)

	Category mapping between emission types and emissions (all emissions mapped to the category type_emission \(\widehat{e}\))

	type_tec_land (type_tec) [13]

	\(\widehat{t} \in \widehat{T}^{\text{LAND}} \subseteq \widehat{T}\)

	Mapping set of technology types and land use

	balance_equality (commodity,level)

	\(c \in C, l \in L\)

	Commodities and level related to Equation COMMODITY_BALANCE_LT

	time_relative (time)

	\(h \in H\)

	Parent sub-annual time slices for considering relative time in parameter General parameters of the MESSAGEix implementation

[8]
(1,2)
The constraint Equation EXTRACTION_EQUIVALENCE is active only for the levels included in this set,
and the constraint Auxiliary COMMODITY_BALANCE is deactivated for these levels.

[9]
The element “economy” is added by default as part of the MESSAGE-scheme ixmp.Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario].

[10]
(1,2)
The element “all” in type_tec and the associated mapping to all technologies in the set cat_tec
are added by default as part of the MESSAGE-scheme message_ix.Scenario.

[11]
The auxiliary set inv_tec (subset of technology) is a short-hand notation for all technologies
with defined investment costs. This activates the investment cost part in the objective function and the
constraints for all technologies where investment decisions are relevant.
It is added by default when exporting MESSAGE-scheme message_ix.Scenario to gdx.

[12]
The auxiliary set renewable_tec (subset of technology) is a short-hand notation
for all technologies with defined parameters relevant for the equations in the “Renewable” section.
It is added by default when exporting MESSAGE-scheme message_ix.Scenario to gdx.

[13]
The mapping set type_tec_land is a dynamic subset of type_tec and specifies whether
emissions from the land-use model emulator module are included when aggregrating over a specific technology type.
The element “all” is added by default in a MESSAGE-scheme message_ix.Scenario.

Mapping sets

Note

These sets are generated automatically when exporting a MESSAGE-scheme ixmp.Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario] to gdx using the API.
They are used in the GAMS model to reduce model size by excluding non-relevant variables and equations
(e.g., activity of a technology outside of its technical lifetime). These are not meant to be
edited through the API when editing scenarios. Not all the Mapping sets are shown in the list below, to access
the full list of mapping sets, please refer to the documentation file found in message_ix\model\MESSAGE\sets_maps_def.gms.

	Set name

	Explanatory comments

	map_node(node,location)

	Mapping of nodes across hierarchy levels (location is in node)

	map_time(time,time2)

	Mapping of time periods across hierarchy levels (time2 is in time)

	map_time_period(year_all,lvl_temporal,time,time2)

	Mapping of the sequence of sub-annual timeslices (used in storage)

	map_resource(node,commodity,grade,year_all)

	Mapping of resources and grades to node over time

	map_ren_grade(node,commodity,grade,year_all)

	Mapping of renewables and grades to node over time

	map_ren_com(node,tec,commodity,year_all)

	Mapping of technologies to renewable energy source as input

	map_rating(node,tec,commodity,level,rating,year_all)

	Mapping of technologues to ratings bin assignment

	map_commodity(node,commodity,level,year_all,time)

	Mapping of commodity-level to node and time

	map_stocks(node,commodity,level,year_all)

	Mapping of commodity-level to node and time

	map_tec(node,tec,year_all)

	Mapping of technology to node and years

	map_tec_time(node,tec,year_all,time)

	Mapping of technology to temporal dissagregation (time)

	map_tec_mode(node,tec,year_all,mode)

	Mapping of technology to modes

	map_tec_storage(node,tec,mode,tec2,mode2,level,commodity,lvl_temporal)

	Mapping of charge-discharge technologies tec to their storage container tec2, stored commodity and level.

	map_time_commodity_storage(node,tec,level,commodity,mode,year_all,time)

	Mapping of storage containers to their input commodity-level (not commodity-level of stored media)

Mapping sets (flags) for bounds

There are a number of mappings sets generated when exporting a message_ix.Scenario to gdx.
They are used as ‘flags’ to indicate whether a constraint is active.
The names of these sets follow the format is_<constraint>_<dir>.

Such mapping sets are necessary because GAMS does not distinguish between 0 and ‘no value assigned’,
i.e., it cannot differentiate between a bound of 0 and ‘no bound assigned’.

Note

These sets are also automatically generated. To see the full list of mapping sets for bounds, please refer to the documentation
file found in message_ix\model\MESSAGE\sets_maps_def.gms.

Mapping sets (flags) for fixed variables

Similar to the mapping sets for bounds, there are mapping sets to indicate whether decision variables
are pre-defined to a specific value, usually taken from a solution of another model instance.
This can be used to represent imperfect foresight where a policy shift or parameter change is introduced in later
years. The names of these sets follow the format is_fixed_<variable>.

Note

These sets are also automatically generated. To see the full list of mapping sets for fixed variables, please refere to the documentation
file found in message_ix\model\MESSAGE\sets_maps_def.gms.

 Years, periods, and time slices

Years, periods, and time slices

This page describes how time-related concepts are represented in the MESSAGEix framework and stored in ix modeling platform.

Years and periods

The year set—in a message_ix.Scenario and in the MESSAGEix model formulation—is used to index parameter dimensions with the names “year”, “year_act”, “year_vtg”, etc.
Elements in this set are representative years within a period of time.
MESSAGEix treats periods as contiguous, but year elements need not be consecutive.
The representative year is always the final year of the corresponding period.

	Example 1
	In a Scenario with consecutive year elements [1984, 1985, 1986, …], the element 1985 refers to the period from 1985-01-01 to 1985-12-31, inclusive.

	Example 2
	In a Scenario with non-consecutive year elements [1000, 1010, 1020, …]:

	the element 1000 refers to a period that ends 1000-12-31, i.e. at the end of the calendar year 1000.

	the element 1010 refers to a period that ends 1010-12-31, i.e. at the end of the calendar year 1010.

	the element 1010 therefore refers to the period from 1001-01-01 to 1010-12-31, inclusive.

The parameter duration_period stores the duration of each period, measured in years, indexed by elements from the year set.
MESSAGEix only supports year set elements that can be represented as integers, and therefore periods with durations that are a whole number of years.

Other parameters may be aligned to the start or end of periods.

	Example 3
	A Scenario has year elements [1000, 1010, 1020, 1030, …], and a technology parameterized with technical_lifetime value of 20 years for the key year_vtg=1010.

	Capacity associated with this technology is constructed at the beginning of the period denoted by 1010, i.e. as of 1001-01-01.

	By the end of this period, 1010-12-31, this technology has operated for 10 years.

	The next period, labelled 1020, ends in 1020-12-31.
By this date, the technology has operated for 20 years, equal to its technical lifetime.

	The following period, labelled 1030, begins on 1021-01-01.
The capacity created in year_vtg=1010 is beyond its technical lifetime, and unavailable in this period.

Time slices

The time set is used to index parameter dimensions with the names “time”, “time_origin”, “time_dest”, etc.
These are variously referred to as “(sub-annual) time slices”, “time steps”, or other names.
Elements in this set are labels for portions of a single year.
The special value 'Year' represents the entire year.

Since a year element refers to the representative, final year within a period, using year and time together denotes a portion of that specific year.

	Example 4
	In a Scenario with year elements [2000, 2002, 2004] and time elements [summer, winter]:

	The year element 2002 refers to the period from 2001-01-01 to 2002-12-31 inclusive, which has a duration_period of 2 years.

	The time element ‘summer’, used alone, refers to a portion of any year.

	In a MESSAGEix parameter indexed by (year, time, …), values with the key (2002, ‘summer’, …) refer to the ‘summer’ portion of the final year (2002-01-01 to 2002-12-31) within the entire period (2001-01-01 to 2002-12-31) denoted by 2002.

Duration of sub-annual time slices

The duration of each sub-annual time slice should be defined relative to the whole year, with a value between 0 and 1, using the parameter duration_time.
For example, in a model with four seasons with the same length, duration_time of each season will be 0.25.
Please note that the duration of time slices does not need to be equal to each other.
This information is needed to calculate capacity of a technology that is active in different time slices.
Time slices can be represented at different temporal levels, using the sets lvl_temporal and map_temporal_hierarchy.
This helps introducing a flexible temporal resolution, e.g., by representing some technologies at finer time resolution while others at Year.
When there are more than one temporal levels, e.g., “year”, “season”, “month”, “day”, etc., duration_time is defined for time slices at each temporal level separately.
The sum of duration_time of time slices at each temporal level must be equal to 1.
For example, in a model with 4 time slices as “season” and 10 time slices as “day” under each “season”, duration_time of each “season” and “day” can be specified as 0.25 and 0.025, respectively.

By default, the unit of ACT is treated per year in the GAMS formulation for different time slices.
This means values reported in time slice “Year” and “month” both have the same unit (e.g., GWa).
However, the user can report the values across parameters and variables with different units relative to the length of the full year.
For example, the user can report ACT in units of “GWa” and “GWh” for time slices of “Year” and “hour”, respectively, in the same model.
To activate this feature, the parent time slice for which the relative units are desired should be specified by set time_relative.
This will ensure that parameter duration_time_rel is effective.
Otherwise, this parameter is filled by value of 1, meaning that the units will be treated uniformly across different sub-annual time slices.

Discounting

The interest_rate in MESSAGEix is defined for a period of one year, therefore, for periods of more than a year, the discounting is performed in a cumulative manner.

	Example 5
	Using the same setup as Example 2:

	Discounting for the element 1010 involves discounting for years 1001, 1002, … , 1010.

	Using the standard PV formula, we have that, for the year 1001 the discount factor would be \((1 + \text{interest_rate})^{1000 - 1001}\), for the year 1002 the discount factor would be \((1 + \text{interest_rate})^{1000 - 1002}\), and so on.

	Therefore, the period discount factor for the element 1010 is \(\text{df}_{1010} = (1 + \text{interest_rate})^{1000 - 1001} + ... + (1 + \text{interest_rate})^{1000 - 1010}\)

	Analogously, the period discount factor for the element 1020 is \(\text{df}_{1020} = (1 + \text{interest_rate})^{1000 - 1011} + ... + (1 + \text{interest_rate})^{1000 - 1020}\)

	So, if we have a cost of K_1010 for the element 1010, its discounted value would be df_1010 * K_1010, which means, all the years in element 1010 have a representative cost of K_1010 that is discounted up to the initial year of the setup, namely, the year 1000.

In practice, since the representative year of a period is always its final year, the actual calculation of the period discount factor within the model is performed backwards, i.e., starting from the final year of the period until the initial year.

 Parameter definition

Note

This page is generated from inline documentation in MESSAGE/parameter_def.gms.

Parameter definition

This file contains the definition of all parameters used in MESSAGEix.

In MESSAGEix, all parameters are understood as yearly values, not as per (multi-year) period.
This provides flexibility when changing the resolution of the model horizon (i.e., the set year).

General parameters of the MESSAGEix implementation

Caution

Parameters written in bold are auxiliary parameters
that are either generated automatically when exporting a message_ix.Scenario to gdx
or that are computed during the pre-processing stage in GAMS (see the footnotes for more
individual details). These are not meant to be edited through the API when editing scenarios.

	Parameter name

	Index dimensions

	Explanatory comments

	interestrate

	year

	Economy-wide interest rate or social discount rate

	duration_time

	time

	Duration of sub-annual time slices (relative to 1) [1]

	duration_period (\(|y|\)) [2]

	year

	Duration of multi-year period (in number of years) [3]

	duration_period_sum

	year | year

	Number of years between two periods [4]

	duration_time_rel

	time | time

	Relative duration between sub-annual time slices [4]

	df_period

	year

	Cumulative discount factor over period duration [4]

	df_year

	year

	Discount factor of the last year in the period [4]

[1]
The element ‘Year’ in the set of subannual time slices time has the value of 1.
This value is assigned by default when creating a new ixmp.Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario] based on the MESSAGE scheme.

[2]
The short-hand notation \(|y|\) is used for the parameters \(\text{duration_period}_y\)
in the mathematical model documentation for exponents.

[3]
The values for this parameter are computed automatically when exporting a MESSAGE-scheme
ixmp.Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario] to gdx.
Note that in MESSAGEix, the elements of the year set are understood to be the last year in a period.
See Years, periods, and time slices.

[4]
(1,2,3,4)
These parameters are computed during the GAMS execution.

Parameters of the Resources section

In MESSAGEix, the volume of resources at the start of the model horizon is defined by resource_volume. The quantity of the
resources that are extracted per year is dependent on two parameters. The first is bound_extraction_up, which constraints
the maximum extraction of the resources (by grade) in a year. The second is resource_remaining, which is the maximum
extraction of the remaining resources in a certain year, as a percentage. Extraction costs for resources are represented by
resource_cost parameter.

	Parameter name

	Index dimensions

	resource_volume

	node | commodity | grade

	resource_cost

	node | commodity | grade | year

	resource_remaining

	node | commodity | grade | year

	bound_extraction_up

	node | commodity | level | year

	commodity_stock [5]

	node | commodity | level | year

	historical_extraction [6]

	node | commodity | grade | year

[5]
Commodity stock refers to an exogenous (initial) quantity of commodity in stock. This parameter allows
(exogenous) additions to the commodity stock over the model horizon, e.g., precipitation that replenishes the water table.

[6]
(1,2,3,4,5)
Historical values of new capacity and activity can be used for parametrising the vintage structure
of existing capacity and implement dynamic constraints in the first model period.

Parameters of the Demand section

	Parameter name

	Index dimensions

	demand [demand_fixed] [7]

	node | commodity | level | year | time

	peak_load_factor [8]

	node | commodity | year

[7]
The parameter demand in a MESSAGE-scheme ixmp.Scenario is translated
to the parameter demand_fixed in the MESSAGEix implementation in GAMS. The variable DEMAND is introduced
as an auxiliary reporting variable; it equals demand_fixed in a MESSAGE-standalone run and reports
the final demand including the price response in an iterative MESSAGE-MACRO solution.

[8]
(1,2)
The parameters peak_load_factor (maximum peak load factor for reliability constraint of firm capacity) and
reliability_factor (reliability of a technology (per rating)) are based on the formulation proposed by Sullivan et al., 2013 [11].
It is used in Reliability of installed capacity.

Parameters of the Technology section

Input/output mapping, costs and engineering specifications

	Parameter name

	Index dimensions

	input [9]

	node_loc | tec | year_vtg | year_act | mode |
node_origin | commodity | level | time | time_origin

	output [9]

	node_loc | tec | year_vtg | year_act | mode |
node_dest | commodity | level | time | time_dest

	inv_cost [9]

	node_loc | tec | year_vtg

	fix_cost [9]

	node_loc | tec | year_vtg | year_act

	var_cost [9]

	node_loc | tec | year_vtg | year_act | mode | time

	levelized_cost [10]

	node_loc | tec | year_vtg | time

	construction_time [11]

	node_loc | tec | year_vtg

	technical_lifetime

	node_loc | tec | year_vtg

	capacity_factor [9]

	node_loc | tec | year_vtg | year_act | time

	operation_factor [9]

	node_loc | tec | year_vtg | year_act

	min_utilization_factor [9]

	node_loc | tec | year_vtg | year_act

	rating_bin [12]

	node | tec | year_act | commodity | level | time | rating

	reliability_factor [8]

	node | tec | year_act | commodity | level | time | rating

	flexibility_factor [13]

	node_loc | tec | year_vtg | year_act | mode | commodity | level | time | rating

	renewable_capacity_factor [14]

	node_loc | commodity | grade | level | year

	renewable_potential [14]

	node | commodity | grade | level | year

	emission_factor

	node_loc | tec | year_vtg | year_act | mode | emission

[9]
(1,2,3,4,5,6,7,8)
Fixed and variable cost parameters and technical specifications are indexed over both
the year of construction (vintage) and the year of operation (actual).
This allows to represent changing technology characteristics depending on the age of the plant.

[10]
The parameter levelized_cost is computed in the GAMS pre-processing under the assumption of
full capacity utilization until the end of the technical lifetime.
As these are calculated in the preprocessing, the reported levelized_cost in the output GDX-file exclude fuel costs.

[11]
The construction time only has an effect on the investment costs; in MESSAGEix,
each unit of new-built capacity is available instantaneously at the beginning of the model period.

[12]
Maximum share of technology in commodity use per rating. The upper bound of a contribution by any technology to the constraints on system reliability
(Reliability of installed capacity) and flexibility (Equation SYSTEM_FLEXIBILITY_CONSTRAINT) can depend on the share of the technology output in the total commodity use at
a specific level.

[13]
Contribution of technologies towards operation flexibility constraint. It is used in Equation SYSTEM_FLEXIBILITY_CONSTRAINT.

[14]
(1,2)
renewable_capacity_factor refers to the quality of renewable potential by grade and renewable_potential refers to the size of the renewable potential per grade.

Bounds on capacity and activity

The following parameters specify upper and lower bounds on new capacity, total installed capacity, and activity. The bounds
on activity are implemented as the aggregate over all vintages in a specific period (Equation ACTIVITY_BOUND_UP and Equation ACTIVITY_BOUND_LO).

	Parameter name

	Index names

	bound_new_capacity_up

	node_loc | tec | year_vtg

	bound_new_capacity_lo

	node_loc | tec | year_vtg

	bound_total_capacity_up

	node_loc | tec | year_act

	bound_total_capacity_lo

	node_loc | tec | year_act

	bound_activity_up

	node_loc | tec | year_act | mode | time

	bound_activity_lo

	node_loc | tec | year_act | mode | time

Dynamic constraints on new capacity and activity

These parameters are used in the dynamic constraint equations to limit the growth (or decline) of activity or of new capacity in each period, relative to the preceding period.
The soft_ parameters control ‘soft’ relaxation of these dynamic constraints, using the method of Keppo and Strubegger (2010) [5].

The growth_ and soft_ parameters are expressed as relative annual change and are unitless.
Because these are annual values, are compounded in the constraint equations by duration_period (\(|y|\)) to obtain the relative inter-period change.

Example: a value of 0.05 for growth_activity_up sets an upper bound of \(1 + 0.05 = 105\%\) activity in one year relative to activity in the preceding year.
In a period with duration \(|y| = 5 \text{ years}\), the activity in the representative year is bounded at \((1.05)^5 = 128\%\) of the activity in the representative year of the preceding period.

Because these parameters do not have a mode (\(m\)) dimension, they cannot be used to constraint the activity/new capacity of single modes of technologies; only the total across all modes.

	Parameter name

	Index names

	initial_new_capacity_up

	node_loc | tec | year_vtg

	growth_new_capacity_up

	node_loc | tec | year_vtg

	soft_new_capacity_up

	node_loc | tec | year_vtg

	initial_new_capacity_lo

	node_loc | tec | year_vtg

	growth_new_capacity_lo

	node_loc | tec | year_vtg

	soft_new_capacity_lo

	node_loc | tec | year_vtg

	initial_activity_up

	node_loc | tec | year_act | time

	growth_activity_up

	node_loc | tec | year_act | time

	soft_activity_up

	node_loc | tec | year_act | time

	initial_activity_lo

	node_loc | tec | year_act | time

	growth_activity_lo

	node_loc | tec | year_act | time

	soft_activity_lo

	node_loc | tec | year_act | time

Parameters for the add-on technologies

The implementation of MESSAGEix includes the functionality to introduce “add-on technologies” that are specifically
linked to parent technologies. This feature can be used to model mitigation options (scrubber, cooling). Upper and
lower bounds of add-on technologies are defined relative to the parent: addon_up and addon_lo, respectively.

Note

No default addon_conversion factor (conversion factor between add-on and parent technology activity) is set.
This is to avoid default conversion factors of 1 being set for technologies with multiple modes, of which only a
single mode should be linked to the add-on technology.

	Parameter name

	Index names

	addon_conversion

	node | tec | year_vtg | year_act | mode | time | type_addon

	addon_up

	node | tec | year_act | mode | time | type_addon

	addon_lo

	node | tec | year_act | mode | time | type_addon

Parameters for representing storage solutions

The MESSAGEix formulation includes “storage” solutions to model sub-annual, inter-temporal storage of commodities in each period.
This feature can be used to model electricity storage (pumped hydro, batteries, compressed air energy storage, etc.), thermal energy storage,
demand side management, and in general any technology for storing commodities (gas, hydrogen, water, etc.) over sub-annual timesteps.
The user defines the chronological order of sub-annual time slices by assigning a number to them in parameter time_order.
This order is used by storage equations to shift the stored commodity in a correct timeline, e.g., from Jan through to Dec, and not vice versa.
The last sub-annual time slice is linked to the first one to close the loop of the year. Parameter storage_initial is to set an initial amount
for the content of storage in any desirable time slice (optionally). This initial value is a cost-free stored media that storage can discharge
in the same or following time slices. storage_self_discharge represents the self-discharge (loss) of storage as % of the level of stored media
in each time slice. This allows to model time-related losses in storage separately, in addition to charging and discharging losses.

	Parameter name

	Index names

	storage_initial

	node | tec | level | commodity | year_act | time

	storage_self_discharge

	node | tec | level | commodity | year_act | time

	time_order

	lvl_temporal | time

Cost parameters for ‘soft’ relaxations of dynamic constraints

The implementation of MESSAGEix includes the functionality for ‘soft’ relaxations of dynamic constraints on
new-built capacity and activity (see Keppo and Strubegger, 2010 [5]).
Refer to the section Dynamic constraints on new capacity and activity. Absolute cost and levelized cost multipliers are used
for the relaxation of upper and lower bounds.

	Parameter name

	Index names

	abs_cost_new_capacity_soft_up

	node_loc | tec | year_vtg

	abs_cost_new_capacity_soft_lo

	node_loc | tec | year_vtg

	level_cost_new_capacity_soft_up

	node_loc | tec | year_vtg

	level_cost_new_capacity_soft_lo

	node_loc | tec | year_vtg

	abs_cost_activity_soft_up

	node_loc | tec | year_act | time

	abs_cost_activity_soft_lo

	node_loc | tec | year_act | time

	level_cost_activity_soft_up

	node_loc | tec | year_act | time

	level_cost_activity_soft_lo

	node_loc | tec | year_act | time

Historical capacity and activity values

To model the transition of an energy system, the initial energy system with its energy mix
needs to be defined first. The historical activity and the historical new capacity do this.
These parameters have to be defined in order to limit the capacity in the first model period.

Historical data on new capacity and activity levels are therefore included in MESSAGEix for
correct accounting of the vintage portfolio and a seamless implementation of dynamic constraints from
historical years to model periods.

	Parameter name

	Index names

	historical_new_capacity [6]

	node_loc | tec | year_vtg

	historical_activity [6]

	node_loc | tec | year_act | mode | time

The activity in the historic period can be defined with

\[\begin{split}\sum_{m} \text{ACT}_{n,t,y^V,y,m,h} \leq \text{duration_time}_{h} \cdot \text{capacity_factor}_{n,t,y^V,y,h} \\
\cdot \text{CAP}_{n,t,y^V,y} \quad t \ \in \ T^{\text{INV}}\end{split}\]

and the historical new capacity with

\[\text{CAP_NEW}_{n,t,y^V} = \frac{\text{CAP}_{n,t,y^V,y}}{\text{duration_period}_{y}}\]

Both equations are equally valid for model periods. However, to calculate historical_new_capacity
and historical_activity all parameters must describe the historic period.

The duration_period of the first period (historic period) is set to the value that appears
most frequently in the model. If, for example, the majority of periods in the model
consists of 10 years, the duration_period of the first period is likewise 10 years.

Auxiliary investment cost parameters and multipliers

Auxiliary investment cost parameters include the remaining technical lifetime at the end of model horizon (beyond_horizon_lifetime) in addition to the
different scaling factors and multipliers as listed below. These factors account for remaining capacity (remaining_capacity) or construction time of new capacity (construction_time_factor),
the value of investment at the end of model horizon (end_of_horizon_factor) or the discount factor of remaining lifetime beyond model horizon (beyond_horizon_factor).

	Parameter name

	Index names

	construction_time_factor

	node | tec | year

	remaining_capacity

	node | tec | year

	end_of_horizon_factor

	node | tec | year

	beyond_horizon_lifetime

	node | tec | year

	beyond_horizon_factor

	node | tec | year

Parameters of the Emission section

The implementation of MESSAGEix includes a flexible and versatile accounting of emissions across different
categories and species, with the option to define upper bounds and taxes on various (aggregates of) emissions
and pollutants, (sets of) technologies, and (sets of) years.

	Parameter name

	Index dimensions

	historical_emission [6]

	node | emission | type_tec | year

	emission_scaling [15]

	type_emission | emission

	bound_emission

	node | type_emission | type_tec | type_year

	tax_emission

	node | type_emission | type_tec | type_year

[15]
The parameter emission_scaling is the scaling factor to harmonize bounds or taxes across types of
emissions. It allows to efficiently aggregate different emissions/pollutants and set bounds or taxes on various categories.

Parameters of the Land-Use model emulator section

The implementation of MESSAGEix includes a land-use model emulator, which draws on exogenous land-use scenarios
(provided by another model) to derive supply of commodities (e.g., biomass) and emissions
from agriculture and forestry. The parameters listed below refer to the assigned land scenario.

	Parameter name

	Index dimensions

	historical_land [6]

	node | land_scenario | year

	land_cost

	node | land_scenario | year

	land_input

	node | land_scenario | year | commodity | level | time

	land_output

	node | land_scenario | year | commodity | level | time

	land_use

	node | land_scenario | year | land_type

	land_emission

	node | land_scenario | year | emission

	initial_land_scen_up

	node | land_scenario | year

	growth_land_scen_up

	node | land_scenario | year

	initial_land_scen_lo

	node | land_scenario | year

	growth_land_scen_lo

	node | land_scenario | year

	initial_land_up

	node | year | land_type

	dynamic_land_up

	node | land_scenario | year | land_type

	growth_land_up

	node | year | land_type

	initial_land_lo

	node | year | land_type

	dynamic_land_lo

	node | land_scenario | year | land_type

	growth_land_lo

	node | year | land_type

Parameters of the Share Constraints section

Share constraints define the share of a given commodity/mode to be active on a certain level. For the mathematical
formulation, refer to Constraints on shares of technologies and commodities.

	Parameter name

	Index dimensions

	share_commodity_up

	shares | node_share | year_act | time

	share_commodity_lo

	shares | node | year_act | time

	share_mode_up

	shares | node_loc | technology | mode | year_act | time

	share_mode_lo

	shares | node_loc | technology | mode | year_act | time

Parameters of the Relations section

Generic linear relations are implemented in MESSAGEix. This feature is intended for development and testing only - all new features
should be implemented as specific new mathematical formulations and associated sets & parameters. For the formulation of the relations,
refer to Section of generic relations (linear constraints).

	Parameter name

	Index dimensions

	relation_upper

	relation | node_rel | year_rel

	relation_lower

	relation | node_rel | year_rel

	relation_cost

	relation | node_rel | year_rel

	relation_new_capacity

	relation | node_rel | year_rel | tec

	relation_total_capacity

	relation | node_rel | year_rel | tec

	relation_activity

	relation | node_rel | year_rel | node_loc | tec | year_act | mode

Fixed variable values

The following parameters allow to set variable values to a specific value.
The value is usually taken from a solution of another model instance
(e.g., scenarios where a shock sets in later to mimic imperfect foresight).

The fixed values do not override any upper or lower bounds that may be defined,
so fixing variables to values outside of that range will yield an infeasible model.

	Parameter name

	Index dimensions

	fixed_extraction

	node | commodity | grade | year

	fixed_stock

	node | commodity | level | year

	fixed_new_capacity

	node | technology | year_vtg

	fixed_capacity

	node | technology | year_vtg | year_act

	fixed_activity

	node | technology | year_vtg | year_act | mode | time

	fixed_land

	node | land_scenario | year

Note that the variable \(\text{STOCK_CHG}\) is determined implicitly by the \(\text{STOCK}\) variable
and therefore does not need to be explicitly fixed.

Auxiliary reporting parameters

The following parameters are used for reporting (post-processing) solved models. They assign monetary value to
the net total system costs from trading and emission taxes (total_cost). Morevoer, they also assign a value
to the total trade of commodities (the difference between the revenues from exports and the costs of imports,
trade_cost) and to the costs from importing (import_cost) and the revenues from exporting (export_cost)
in each node and year.

	Parameter name

	Index dimensions

	total_cost

	node | year

	trade_cost

	node | year

	import_cost

	node | commodity | year

	export_cost

	node | commodity | year

 MESSAGE core formulation

Note

This page is generated from inline documentation in MESSAGE/model_core.gms.

MESSAGE core formulation

The MESSAGEix systems-optimization model minimizes total costs while satisfying given demand levels for commodities/services and considering a broad range of technical/engineering constraints and societal restrictions (e.g. bounds on greenhouse gas emissions, pollutants, system reliability).
Demand levels are static (i.e. non-elastic), but the demand response can be integrated by linking MESSAGEix to the single sector general-economy MACRO model included in this framework.

For the complete list of sets, mappings and parameters, refer to the auto-documentation page Sets and mappings and Parameter definition.
The mathematical notation that is used to represent sets and mappings in the equations below can also be found in the tables in Sets and mappings.

	Variable definitions

	Decision variables

	Auxiliary variables

	Objective function

	The objective function of the MESSAGEix core model

	Equation OBJECTIVE

	Regional system cost accounting function

	Accounting of regional system costs over time

	Equation COST_ACCOUNTING_NODAL

	Resource and commodity section

	Constraints on resource extraction

	Equation EXTRACTION_EQUIVALENCE

	Equation EXTRACTION_BOUND_UP

	Equation RESOURCE_CONSTRAINT

	Equation RESOURCE_HORIZON

	Constraints on commodities and stocks

	Auxiliary COMMODITY_BALANCE

	Equation COMMODITY_BALANCE_GT

	Equation COMMODITY_BALANCE_LT

	Equation STOCKS_BALANCE

	Technology section

	Technical and engineering constraints

	Equation CAPACITY_CONSTRAINT

	Equation CAPACITY_MAINTENANCE_HIST

	Equation CAPACITY_MAINTENANCE_NEW

	Equation CAPACITY_MAINTENANCE

	Equation OPERATION_CONSTRAINT

	Equation MIN_UTILIZATION_CONSTRAINT

	Constraints representing renewable integration

	Equation RENEWABLES_EQUIVALENCE

	Equation RENEWABLES_POTENTIAL_CONSTRAINT

	Equation RENEWABLES_CAPACITY_REQUIREMENT

	Constraints for addon technologies

	Equation ADDON_ACTIVITY_UP

	Equation ADDON_ACTIVITY_LO

	System reliability and flexibility requirements

	Aggregate use of a commodity

	Equation COMMODITY_USE_LEVEL

	Auxilary variables for technology activity by “rating bins”

	Equation ACTIVITY_RATING_BIN

	Equation ACTIVITY_SHARE_TOTAL

	Reliability of installed capacity

	Equation FIRM_CAPACITY_PROVISION

	Equation SYSTEM_RELIABILITY_CONSTRAINT

	Equation SYSTEM_FLEXIBILITY_CONSTRAINT

	Bounds on capacity and activity

	Equation NEW_CAPACITY_BOUND_UP

	Equation NEW_CAPACITY_BOUND_LO

	Equation TOTAL_CAPACITY_BOUND_UP

	Equation TOTAL_CAPACITY_BOUND_LO

	Equation ACTIVITY_BOUND_UP

	Equation ACTIVITY_BOUND_ALL_MODES_UP

	Equation ACTIVITY_BOUND_LO

	Equation ACTIVITY_BOUND_ALL_MODES_LO

	Constraints on shares of technologies and commodities

	Share constraints on activity by mode

	Equation SHARES_MODE_UP

	Equation SHARES_MODE_LO

	Share constraints on commodities

	Equation SHARE_CONSTRAINT_COMMODITY_UP

	Equation SHARE_CONSTRAINT_COMMODITY_LO

	Dynamic constraints on new capacity and activity

	Equation NEW_CAPACITY_CONSTRAINT_UP

	Equation NEW_CAPACITY_SOFT_CONSTRAINT_UP

	Equation NEW_CAPACITY_CONSTRAINT_LO

	Equation NEW_CAPACITY_SOFT_CONSTRAINT_LO

	Equation ACTIVITY_CONSTRAINT_UP

	Equation ACTIVITY_SOFT_CONSTRAINT_UP

	Equation ACTIVITY_CONSTRAINT_LO

	Equation ACTIVITY_SOFT_CONSTRAINT_LO

	Emission section

	Auxiliary variable for aggregate emissions

	Equation EMISSION_EQUIVALENCE

	Bound on emissions

	Equation EMISSION_CONSTRAINT

	Land-use model emulator section

	Bounds on total land use

	Equation LAND_CONSTRAINT

	Dynamic constraints on land use

	Equation DYNAMIC_LAND_SCEN_CONSTRAINT_UP

	Equation DYNAMIC_LAND_SCEN_CONSTRAINT_LO

	Equation DYNAMIC_LAND_TYPE_CONSTRAINT_UP

	Equation DYNAMIC_LAND_TYPE_CONSTRAINT_LO

	Section of generic relations (linear constraints)

	Auxiliary variable for left-hand side

	Equation RELATION_EQUIVALENCE

	Upper and lower bounds on user-defined relations

	Equation RELATION_CONSTRAINT_UP

	Equation RELATION_CONSTRAINT_LO

	Storage section

	Storage equations

	Equation STORAGE_CHANGE

	Equation STORAGE_BALANCE

	Equation STORAGE_BALANCE_INIT

	Equation STORAGE_INPUT

Variable definitions

Decision variables

	Variable

	Explanatory text

	\(\text{OBJ} \in \mathbb{R}\)

	Objective value of the optimization program

	\(\text{EXT}_{n,c,g,y} \in \mathbb{R}_+\)

	Extraction of non-renewable/exhaustible resources from reserves

	\(\text{STOCK}_{n,c,l,y} \in \mathbb{R}_+\)

	Quantity in stock (storage) at start of period \(y\)

	\(\text{STOCK_CHG}_{n,c,l,y,h} \in \mathbb{R}\)

	Input or output quantity into intertemporal commodity stock (storage)

	\(\text{COST_NODAL}_{n,y} \in \mathbb{R}\)

	System costs at the node level over time

	\(\text{REN}_{n,t,c,g,y,h} \in \mathbb{R}_+\)

	Activity of renewable technologies per grade

	\(\text{CAP_NEW}_{n,t,y} \in \mathbb{R}_+\)

	Newly installed capacity (yearly average over period duration)

	\(\text{CAP}_{n,t,y^V,y} \in \mathbb{R}_+\)

	Maintained capacity in year \(y\) of vintage \(y^V\)

	\(\text{CAP_FIRM}_{n,t,c,l,y,q} \in \mathbb{R}_+\)

	Capacity counting towards firm (dispatchable)

	\(\text{ACT}_{n,t,y^V,y,m,h} \in \mathbb{R}\)

	Activity of a technology (by vintage, mode, subannual time)

	\(\text{ACT_RATING}_{n,t,y^V,y,c,l,h,q} \in \mathbb{R}_+\)

	Auxiliary variable for activity attributed to a particular rating bin [1]

	\(\text{CAP_NEW_UP}_{n,t,y} \in \mathbb{R}_+\)

	Relaxation of upper dynamic constraint on new capacity

	\(\text{CAP_NEW_LO}_{n,t,y} \in \mathbb{R}_+\)

	Relaxation of lower dynamic constraint on new capacity

	\(\text{ACT_UP}_{n,t,y,h} \in \mathbb{R}_+\)

	Relaxation of upper dynamic constraint on activity [2]

	\(\text{ACT_LO}_{n,t,y,h} \in \mathbb{R}_+\)

	Relaxation of lower dynamic constraint on activity [2]

	\(\text{LAND}_{n,s,y} \in [0,1]\)

	Relative share of land-use scenario (for land-use model emulator)

	\(\text{EMISS}_{n,e,\widehat{t},y} \in \mathbb{R}\)

	Auxiliary variable for aggregate emissions by technology type

	\(\text{REL}_{r,n,y} \in \mathbb{R}\)

	Auxiliary variable for left-hand side of relations (linear constraints)

	\(\text{COMMODITY_USE}_{n,c,l,y} \in \mathbb{R}\)

	Auxiliary variable for amount of commodity used at specific level

	\(\text{COMMODITY_BALANCE}_{n,c,l,y,h} \in \mathbb{R}\)

	Auxiliary variable for right-hand side of Auxiliary COMMODITY_BALANCE

	\(\text{STORAGE}_{n,t,m,l,c,y,h} \in \mathbb{R}\)

	State of charge or content of storage at each sub-annual time slice

	\(\text{STORAGE_CHARGE}_{n,t,m,l,c,y,h} \in \mathbb{R}\)

	Charging of storage in each sub-annual time slice (negative for discharging)

The index \(y^V\) is the year of construction (vintage) wherever it is necessary to
clearly distinguish between year of construction and the year of operation.

All decision variables are by year, not by (multi-year) period, except \(\text{STOCK}_{n,c,l,y}\).
In particular, the new capacity variable \(\text{CAP_NEW}_{n,t,y}\) has to be multiplied by the number of years
in a period \(|y| = \text{duration_period}_{y}\) to determine the available capacity \(\text{CAP}_{n,t,y^V,y}\)
in subsequent periods (assuming the newly build capacity is not immediately decommissioned):

\(\text{CAP}_{n,t,y^V,y} = \text{CAP_NEW}_{n,t,y} \cdot \text{duration_period}_{y}\)

\(\text{CAP_NEW}_{n,t,y}\) is therefore the amount of newly installed capacity in one year and
\(\text{CAP}_{n,t,y^V,y}\) the amount, which is installed at the end of a (usually multi-year) period.
This formulation gives more flexibility when it comes to using periods of different duration
(more intuitive comparison across different periods).

The current model framework allows both input or output normalized formulation.
This will affect the parametrization, see Section Efficiency - output- vs. input defined technologies for more details.

[1]
The auxiliary variable \(\text{ACT_RATING}_{n,t,y^V,y,c,l,h,q}\) is defined in terms of input or
output of the technology.

[2]
(1,2)
The dynamic activity constraints are implemented as summed over all modes;
therefore, the variables for the relaxation are not indexed over the set mode.

Auxiliary variables

	Variable

	Explanatory text

	\(\text{DEMAND}_{n,c,l,y,h} \in \mathbb{R}\)

	Demand level (in equilibrium with MACRO integration)

	\(\text{PRICE_COMMODITY}_{n,c,l,y,h} \in \mathbb{R}\)

	Commodity price (undiscounted marginals of Equation COMMODITY_BALANCE_GT and Equation COMMODITY_BALANCE_LT)

	\(\text{PRICE_EMISSION}_{n,\widehat{e},\widehat{t},y} \in \mathbb{R}\)

	Emission price (undiscounted marginals of Equation EMISSION_CONSTRAINT)

	\(\text{COST_NODAL_NET}_{n,y} \in \mathbb{R}\)

	System costs at the node level net of energy trade revenues/cost

	\(\text{GDP}_{n,y} \in \mathbb{R}\)

	Gross domestic product (GDP) in market exchange rates for MACRO reporting

Warning

Please be aware that transitioning from one period length to another for consecutive periods may result in false values of \(\text{PRICE_EMISSION}\).
Please see this issue [https://github.com/iiasa/message_ix/issues/723] for further information. We are currently working on a fix.

Objective function

The objective function of the MESSAGEix core model

Equation OBJECTIVE

The objective function (of the core model) minimizes total discounted systems costs including costs for emissions,
relaxations of dynamic constraints

\[\text{OBJ} = \sum_{n,y \in Y^{M}} \text{df_period}_{y} \cdot \text{COST_NODAL}_{n,y}\]

Regional system cost accounting function

Accounting of regional system costs over time

Equation COST_ACCOUNTING_NODAL

Accounting of regional systems costs over time as well as costs for emissions (taxes),
land use (from the model land-use model emulator), relaxations of dynamic constraints,
and linear relations.

\[\begin{split}\text{COST_NODAL}_{n,y} & = \sum_{c,g} \ \text{resource_cost}_{n,c,g,y} \cdot \text{EXT}_{n,c,g,y} \\
 & + \sum_{t} \
 \bigg(\text{inv_cost}_{n,t,y} \cdot \text{construction_time_factor}_{n,t,y} \\
 & \quad \quad \quad \cdot \text{end_of_horizon_factor}_{n,t,y} \cdot \text{CAP_NEW}_{n,t,y} \\[4 pt]
 & \quad \quad + \sum_{y^V \leq y} \ \text{fix_cost}_{n,t,y^V,y} \cdot \text{CAP}_{n,t,y^V,y} \\
 & \quad \quad + \sum_{\substack{y^V \leq y \\ m,h}} \ \text{var_cost}_{n,t,y^V,y,m,h} \cdot \text{ACT}_{n,t,y^V,y,m,h} \\
 & \quad \quad + \Big(\text{abs_cost_new_capacity_soft_up}_{n,t,y} \\
 & \quad \quad \quad
 + \text{level_cost_new_capacity_soft_up}_{n,t,y} \cdot\ \text{inv_cost}_{n,t,y}
 \Big) \cdot \text{CAP_NEW_UP}_{n,t,y} \\[4pt]
 & \quad \quad + \Big(\text{abs_cost_new_capacity_soft_lo}_{n,t,y} \\
 & \quad \quad \quad
 + \text{level_cost_new_capacity_soft_lo}_{n,t,y} \cdot\ \text{inv_cost}_{n,t,y}
 \Big) \cdot \text{CAP_NEW_LO}_{n,t,y} \\[4pt]
 & \quad \quad + \sum_{m,h} \ \Big(\text{abs_cost_activity_soft_up}_{n,t,y,m,h} \\
 & \quad \quad \quad
 + \text{level_cost_activity_soft_up}_{n,t,y,m,h} \cdot\ \text{levelized_cost}_{n,t,y,m,h}
 \Big) \cdot \text{ACT_UP}_{n,t,y,h} \\
 & \quad \quad + \sum_{m,h} \ \Big(\text{abs_cost_activity_soft_lo}_{n,t,y,m,h} \\
 & \quad \quad \quad
 + \text{level_cost_activity_soft_lo}_{n,t,y,m,h} \cdot\ \text{levelized_cost}_{n,t,y,m,h}
 \Big) \cdot \text{ACT_LO}_{n,t,y,h} \bigg) \\
 & + \sum_{\substack{\widehat{e},\widehat{t} \\ e \in E(\widehat{e})}}
 \text{emission_scaling}_{\widehat{e},e} \cdot \ \text{emission_tax}_{n,\widehat{e},\widehat{t},y}
 \cdot \text{EMISS}_{n,e,\widehat{t},y} \\
 & + \sum_{s} \text{land_cost}_{n,s,y} \cdot \text{LAND}_{n,s,y} \\
 & + \sum_{r} \text{relation_cost}_{r,n,y} \cdot \text{REL}_{r,n,y}\end{split}\]

Here, \(n^L \in N(n)\) are all nodes \(n^L\) that are sub-nodes of node \(n\).
The subset of technologies \(t \in T(\widehat{t})\) are all tecs that belong to category \(\widehat{t}\),
and similar notation is used for emissions \(e \in E\).

Resource and commodity section

Constraints on resource extraction

Equation EXTRACTION_EQUIVALENCE

This constraint translates the quantity of resources extracted (summed over all grades) to the input used by
all technologies (drawing from that node). It is introduced to simplify subsequent notation in input/output relations
and nodal balance constraints.

\[\begin{split}\sum_{g} \text{EXT}_{n,c,g,y} =
\sum_{\substack{n^L,t,m,h,h^{\text{OD}} \\ y^V \leq y \\ \ l \in L^{\text{RES}} \subseteq L }}
 \text{input}_{n^L,t,y^V,y,m,n,c,l,h,h^{\text{OD}}} \cdot \text{ACT}_{n^L,t,m,y,h}\end{split}\]

The set \(L^{\text{RES}} \subseteq L\) denotes all levels for which the detailed representation of resources applies.

Equation EXTRACTION_BOUND_UP

This constraint specifies an upper bound on resource extraction by grade.

\[\text{EXT}_{n,c,g,y} \leq \text{bound_extraction_up}_{n,c,g,y}\]

Equation RESOURCE_CONSTRAINT

This constraint restricts that resource extraction in a year guarantees the “remaining resources” constraint,
i.e., only a given fraction of remaining resources can be extracted per year.

\[\begin{split}\text{EXT}_{n,c,g,y} \leq
\text{resource_remaining}_{n,c,g,y} \cdot
 \Big(& \text{resource_volume}_{n,c,g} \\
 & - \sum_{y' < y} \text{duration_period}_{y'} \cdot \text{EXT}_{n,c,g,y'} \Big)\end{split}\]

Equation RESOURCE_HORIZON

This constraint ensures that total resource extraction over the model horizon does not exceed the available resources.

\[\sum_{y} \text{duration_period}_{y} \cdot \text{EXT}_{n,c,g,y} \leq \text{resource_volume}_{n,c,g}\]

Constraints on commodities and stocks

Auxiliary COMMODITY_BALANCE

For the commodity balance constraints below, we introduce an auxiliary variable called \(\text{COMMODITY_BALANCE}\). This is implemented
as a GAMS $macro function.

\[\begin{split}\sum_{\substack{n^L,t,m,h^A \\ y^V \leq y}} \text{output}_{n^L,t,y^V,y,m,n,c,l,h^A,h}
 \cdot \text{duration_time_rel}_{h,h^A} \cdot \text{ACT}_{n^L,t,y^V,y,m,h^A} & \\
- \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y}} \text{input}_{n^L,t,y^V,y,m,n,c,l,h^A,h}
 \cdot \text{duration_time_rel}_{h,h^A} \cdot \text{ACT}_{n^L,t,m,y,h^A} & \\
+ \ \text{STOCK_CHG}_{n,c,l,y,h} + \ \sum_s \Big(\text{land_output}_{n,s,y,c,l,h} - \text{land_input}_{n,s,y,c,l,h} \Big) \cdot & \text{LAND}_{n,s,y} \\[4pt]
- \ \text{demand_fixed}_{n,c,l,y,h}
= \text{COMMODITY_BALANCE}_{n,c,l,y,h} \quad \forall \ l \notin (L^{\text{RES}}, & L^{\text{REN}}, L^{\text{STOR}} \subseteq L)\end{split}\]

The commodity balance constraint at the resource level is included in the Equation RESOURCE_CONSTRAINT,
while at the renewable level, it is included in the Equation RENEWABLES_EQUIVALENCE,
and at the storage level, it is included in the Equation STORAGE_BALANCE.

Equation COMMODITY_BALANCE_GT

This constraint ensures that supply is greater or equal than demand for every commodity-level combination.

\[\text{COMMODITY_BALANCE}_{n,c,l,y,h} \geq 0\]

Equation COMMODITY_BALANCE_LT

This constraint ensures that the supply is smaller than or equal to the demand for all commodity-level combinations
given in the \(\text{balance_equality}_{c,l}\). In combination with the constraint above, it ensures that supply
is (exactly) equal to demand.

\[\text{COMMODITY_BALANCE}_{n,c,l,y,h} \leq 0\]

Equation STOCKS_BALANCE

This constraint ensures the inter-temporal balance of commodity stocks.
The parameter \(\text{commodity_stocks}_{n,c,l}\) can be used to model exogenous additions to the stock

\[\begin{split}\text{STOCK}_{n,c,l,y} + \text{commodity_stock}_{n,c,l,y} =
 \text{duration_period}_{y} \cdot & \sum_{h} \text{STOCK_CHG}_{n,c,l,y,h} \\
 & + \text{STOCK}_{n,c,l,y+1}\end{split}\]

Technology section

Technical and engineering constraints

The first set of constraints concern technologies that have explicit investment decisions
and where installed/maintained capacity is relevant for operational decisions.
The set where \(T^{\text{INV}} \subseteq T\) is the set of all these technologies.

Equation CAPACITY_CONSTRAINT

This constraint ensures that the actual activity of a technology at a node cannot exceed available (maintained)
capacity summed over all vintages, including the technology capacity factor \(\text{capacity_factor}_{n,t,y,t}\).

\[\sum_{m} \text{ACT}_{n,t,y^V,y,m,h}
 \leq \text{duration_time}_{h} \cdot \text{capacity_factor}_{n,t,y^V,y,h} \cdot \text{CAP}_{n,t,y^V,y}
 \quad \forall \ t \ \in \ T^{\text{INV}}\]

Equation CAPACITY_MAINTENANCE_HIST

The following three constraints implement technology capacity maintenance over time to allow early retirment.
The optimization problem determines the optimal timing of retirement, when fixed operation-and-maintenance costs
exceed the benefit in the objective function.

The first constraint ensures that historical capacity (built prior to the model horizon) is available
as installed capacity in the first model period.

\[\begin{split}\text{CAP}_{n,t,y^V,\text{'first_period'}} & \leq
 \text{remaining_capacity}_{n,t,y^V,\text{'first_period'}} \cdot
 \text{duration_period}_{y^V} \cdot
 \text{historical_new_capacity}_{n,t,y^V} \\
& \text{if } y^V < \text{'first_period'} \text{ and } |y| - |y^V| < \text{technical_lifetime}_{n,t,y^V}
\quad \forall \ t \in T^{\text{INV}}\end{split}\]

Equation CAPACITY_MAINTENANCE_NEW

The second constraint ensures that capacity is fully maintained throughout the model period
in which it was constructed (no early retirement in the period of construction).

\[\text{CAP}_{n,t,y^V,y^V} =
 \text{remaining_capacity}_{n,t,y^V,y^V} \cdot
 \text{duration_period}_{y^V} \cdot
 \text{CAP_NEW}_{n,t,y^V}
\quad \forall \ t \in T^{\text{INV}}\]

The current formulation does not account for construction time in the constraints, but only adds a mark-up
to the investment costs in the objective function.

Equation CAPACITY_MAINTENANCE

The third constraint implements the dynamics of capacity maintenance throughout the model horizon.
Installed capacity can be maintained over time until decommissioning, which is irreversible.

\[\begin{split}\text{CAP}_{n,t,y^V,y} & \leq
 \text{remaining_capacity}_{n,t,y^V,y} \cdot
 \text{CAP}_{n,t,y^V,y-1} \\
\quad & \text{if } y > y^V \text{ and } y^V > \text{'first_period'} \text{ and } |y| - |y^V| < \text{technical_lifetime}_{n,t,y^V}
\quad \forall \ t \in T^{\text{INV}}\end{split}\]

Equation OPERATION_CONSTRAINT

This constraint provides an upper bound on the total operation of installed capacity over a year.
It can be used to represent reuqired scheduled unavailability of installed capacity.

\[\sum_{m,h} \text{ACT}_{n,t,y^V,y,m,h}
 \leq \text{operation_factor}_{n,t,y^V,y} \cdot \text{capacity_factor}_{n,t,y^V,y,m,\text{'year'}} \cdot \text{CAP}_{n,t,y^V,y}
\quad \forall \ t \in T^{\text{INV}}\]

This constraint is only active if \(\text{operation_factor}_{n,t,y^V,y} < 1\).

Equation MIN_UTILIZATION_CONSTRAINT

This constraint provides a lower bound on the total utilization of installed capacity over a year.

\[\sum_{m,h} \text{ACT}_{n,t,y^V,y,m,h} \geq \text{min_utilization_factor}_{n,t,y^V,y} \cdot \text{CAP}_{n,t,y^V,y}
\quad \forall \ t \in T^{\text{INV}}\]

This constraint is only active if \(\text{min_utilization_factor}_{n,t,y^V,y}\) is defined.

Constraints representing renewable integration

Equation RENEWABLES_EQUIVALENCE

This constraint defines the auxiliary variables \(\text{REN}\)
to be equal to the output of renewable technologies (summed over grades).

\[\begin{split}\sum_{g} \text{REN}_{n,t,c,g,y,h} \leq
\sum_{\substack{n,t,m,l,h,h^{\text{OD}} \\ y^V \leq y \\ \ l \in L^{\text{REN}} \subseteq L }}
 \text{input}_{n^L,t,y^V,y,m,n,c,l,h,h^{\text{OD}}} \cdot \text{ACT}_{n^L,t,m,y,h}\end{split}\]

The set \(L^{\text{REN}} \subseteq L\) denotes all levels for which the detailed representation of renewables applies.

Equation RENEWABLES_POTENTIAL_CONSTRAINT

This constraint sets the potential potential by grade as the upper bound for the auxiliary variable \(REN\).

\[\begin{split}\sum_{\substack{t,h \\ \ t \in T^{R} \subseteq t }} \text{REN}_{n,t,c,g,y,h}
 \leq \sum_{\substack{l \\ l \in L^{R} \subseteq L }} \text{renewable_potential}_{n,c,g,l,y}\end{split}\]

Equation RENEWABLES_CAPACITY_REQUIREMENT

This constraint connects the capacity factor of a renewable grade to the
installed capacity of a technology. It sets the lower limit for the capacity
of a renewable technology to the summed activity over all grades (REN) devided
by the capactiy factor of this grade.
It represents the fact that different renewable grades require different installed
capacities to provide their full potential.

\[\begin{split}\sum_{y^V, h} & \text{CAP}_{n,t,y^V,y} \cdot \text{operation_factor}_{n,t,y^V,y} \cdot \text{capacity_factor}_{n,t,y^V,y,h} \\
 & \quad \geq \sum_{g,h,l} \frac{1}{\text{renewable_capacity_factor}_{n,c,g,l,y}} \cdot \text{REN}_{n,t,c,g,y,h}\end{split}\]

This constraint is only active if \(\text{renewable_capacity_factor}_{n,c,g,l,y}\) is defined.

Constraints for addon technologies

Equation ADDON_ACTIVITY_UP

This constraint provides an upper bound on the activity of an addon technology that can only be operated
jointly with a parent technology (e.g., abatement option, SO2 scrubber, power plant cooling technology).

\[\begin{split}\sum_{\substack{t^a, y^V \leq y}} \text{ACT}_{n,t^a,y^V,y,m,h}
\leq
\sum_{\substack{t, y^V \leq y}}
 & \text{addon_up}_{n,t,y,m,h,\widehat{t^a}} \cdot
 \text{addon_conversion}_{n,t,y^V,y,m,h,\widehat{t^a}} \\
 & \cdot \text{ACT}_{n,t,y^V,y,m,h} \quad \forall \ t^a \in T^{A}\end{split}\]

Equation ADDON_ACTIVITY_LO

This constraint provides a lower bound on the activity of an addon technology that has to be operated
jointly with a parent technology (e.g., power plant cooling technology). The parameter addon_lo allows to define
a minimum level of operation of addon technologies relative to the activity of the parent technology.
If addon_lo = 1, this means that it is mandatory to operate the addon technology at the same level as the
parent technology (i.e., full mitigation).

\[\begin{split}\sum_{\substack{t^a, y^V \leq y}} \text{ACT}_{n,t^a,y^V,y,m,h}
\geq
\sum_{\substack{t, y^V \leq y}}
 & \text{addon_lo}_{n,t,y,m,h,\widehat{t^a}} \cdot
 \text{addon_conversion}_{n,t,y^V,y,m,h,\widehat{t^a}} \\
 & \cdot \text{ACT}_{n,t,y^V,y,m,h} \quad \forall \ t^a \in T^{A}\end{split}\]

System reliability and flexibility requirements

This section followi allows to include system-wide reliability and flexility considerations.
The current formulation is based on Sullivan et al., 2013 [11].

Aggregate use of a commodity

The system reliability and flexibility constraints are implemented using an auxiliary variable representing
the total use (i.e., input of each commodity per level).

Equation COMMODITY_USE_LEVEL

This constraint defines the auxiliary variable \(\text{COMMODITY_USE}_{n,c,l,y}\), which is used to define
the rating bins and the peak-load that needs to be offset with firm (dispatchable) capacity.

\[\begin{split}\text{COMMODITY_USE}_{n,c,l,y}
= & \sum_{n^L,t,y^V,m,h} \text{input}_{n^L,t,y^V,y,m,n,c,l,h,h} \\
 & \quad \cdot \text{duration_time_rel}_{h,h} \cdot \text{ACT}_{n^L,t,y^V,y,m,h}\end{split}\]

This constraint and the auxiliary variable is only active if \(\text{peak_load_factor}_{n,c,l,y,h}\) or
\(\text{flexibility_factor}_{n,t,y^V,y,m,c,l,h,r}\) is defined.

Auxilary variables for technology activity by “rating bins”

The capacity and activity of certain (usually non-dispatchable) technologies
can be assumed to only partially contribute to the system reliability and flexibility requirements.

Equation ACTIVITY_RATING_BIN

The auxiliary variable for rating-specific activity of each technology cannot exceed
the share of the rating bin in relation to the total commodity use.

\[\text{ACT_RATING}_{n,t,y^V,y,c,l,h,q}
\leq \text{rating_bin}_{n,t,y,c,l,h,q} \cdot \text{COMMODITY_USE}_{n,c,l,y}\]

Equation ACTIVITY_SHARE_TOTAL

The sum of the auxiliary rating-specific activity variables need to equal the total input and/or output
of the technology.

\[\begin{split}\sum_q \text{ACT_RATING}_{n,t,y^V,y,c,l,h,q}
= \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y}} &
 (\text{input}_{n^L,t,y^V,y,m,n,c,l,h^A,h} + \text{output}_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
 & \quad \cdot \text{duration_time_rel}_{h,h^A} \cdot \text{ACT}_{n^L,t,y^V,y,m,h^A} \\\end{split}\]

Reliability of installed capacity

The “firm capacity” that a technology can contribute to system reliability depends on its dispatch characteristics.
For dispatchable technologies, the total installed capacity counts toward the firm capacity constraint.
This is active if the parameter is defined over \(\text{reliability_factor}_{n,t,y,c,l,h,\text{'firm'}}\).
For non-dispatchable technologies, or those that do not have explicit investment decisions,
the contribution to system reliability is calculated
by using the auxiliary variable \(\text{ACT_RATING}_{n,t,y^V,y,c,l,h,q}\) as a proxy,
with the \(\text{reliability_factor}_{n,t,y,c,l,h,q}\) defined per rating bin \(q\).

Equation FIRM_CAPACITY_PROVISION

Technologies where the reliability factor is defined with the rating firm
have an auxiliary variable \(\text{CAP_FIRM}_{n,t,c,l,y}\), defined in terms of output.

\[\begin{split}\text{CAP_FIRM}_{n,t,c,l,y}
= \sum_{y^V \leq y} & \text{output}_{n^L,t,y^V,y,m,n,c,l,h^A,h} \cdot \text{duration_time}_h \\
 & \quad \cdot \text{capacity_factor}_{n,t,y^V,y,h} \cdot \text{CAP}_{n,t,y^Y,y}
\quad \forall \ t \in T^{\text{INV}}\end{split}\]

Equation SYSTEM_RELIABILITY_CONSTRAINT

This constraint ensures that there is sufficient firm (dispatchable) capacity in each period.
The formulation is based on Sullivan et al., 2013 [11].

\[\begin{split}\sum_{t, q \substack{t \in T^{\text{INV}} \\ y^V \leq y} } &
 \text{reliability_factor}_{n,t,y,c,l,h,\text{'firm'}}
 \cdot \text{CAP_FIRM}_{n,t,c,l,y} \\
+ \sum_{t,q,y^V \leq y} &
 \text{reliability_factor}_{n,t,y,c,l,h,q}
 \cdot \text{ACT_RATING}_{n,t,y^V,y,c,l,h,q} \\
 & \quad \geq \text{peak_load_factor}_{n,c,l,y,h} \cdot \text{COMMODITY_USE}_{n,c,l,y}\end{split}\]

This constraint is only active if \(\text{peak_load_factor}_{n,c,l,y,h}\) is defined.

Equation SYSTEM_FLEXIBILITY_CONSTRAINT

This constraint ensures that, in each sub-annual time slice, there is a sufficient
contribution from flexible technologies to ensure smooth system operation.

\[\begin{split}\sum_{\substack{n^L,t,m,h^A \\ y^V \leq y}} &
 \text{flexibility_factor}_{n^L,t,y^V,y,m,c,l,h,\text{'unrated'}} \\
& \quad \cdot (\text{output}_{n^L,t,y^V,y,m,n,c,l,h^A,h} + \text{input}_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
& \quad \cdot \text{duration_time_rel}_{h,h^A}
 \cdot \text{ACT}_{n,t,y^V,y,m,h} \\
+ \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y}} &
 \text{flexibility_factor}_{n^L,t,y^V,y,m,c,l,h,1} \\
& \quad \cdot (\text{output}_{n^L,t,y^V,y,m,n,c,l,h^A,h} + \text{input}_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
& \quad \cdot \text{duration_time_rel}_{h,h^A}
 \cdot \text{ACT_RATING}_{n,t,y^V,y,c,l,h,q}
\geq 0\end{split}\]

Bounds on capacity and activity

Equation NEW_CAPACITY_BOUND_UP

This constraint provides upper bounds on new capacity installation.

\[\text{CAP_NEW}_{n,t,y} \leq \text{bound_new_capacity_up}_{n,t,y} \quad \forall \ t \ \in \ T^{\text{INV}}\]

Equation NEW_CAPACITY_BOUND_LO

This constraint provides lower bounds on new capacity installation.

\[\text{CAP_NEW}_{n,t,y} \geq \text{bound_new_capacity_lo}_{n,t,y} \quad \forall \ t \ \in \ T^{\text{INV}}\]

Equation TOTAL_CAPACITY_BOUND_UP

This constraint gives upper bounds on the total installed capacity of a technology in a specific year of operation
summed over all vintages.

\[\sum_{y^V \leq y} \text{CAP}_{n,t,y,y^V} \leq \text{bound_total_capacity_up}_{n,t,y} \quad \forall \ t \ \in \ T^{\text{INV}}\]

Equation TOTAL_CAPACITY_BOUND_LO

This constraint gives lower bounds on the total installed capacity of a technology.

\[\sum_{y^V \leq y} \text{CAP}_{n,t,y,y^V} \geq \text{bound_total_capacity_lo}_{n,t,y} \quad \forall \ t \ \in \ T^{\text{INV}}\]

Equation ACTIVITY_BOUND_UP

This constraint provides upper bounds by mode of a technology activity, summed over all vintages.

\[\sum_{y^V \leq y} \text{ACT}_{n,t,y^V,y,m,h} \leq \text{bound_activity_up}_{n,t,m,y,h}\]

Equation ACTIVITY_BOUND_ALL_MODES_UP

This constraint provides upper bounds of a technology activity across all modes and vintages.

\[\sum_{y^V \leq y, m} \text{ACT}_{n,t,y^V,y,m,h} \leq \text{bound_activity_up}_{n,t,y,'all',h}\]

Equation ACTIVITY_BOUND_LO

This constraint provides lower bounds by mode of a technology activity, summed over
all vintages.

\[\sum_{y^V \leq y} \text{ACT}_{n,t,y^V,y,m,h} \geq \text{bound_activity_lo}_{n,t,y,m,h}\]

We assume that \(\text{bound_activity_lo}_{n,t,y,m,h} = 0\)
unless explicitly stated otherwise.

Equation ACTIVITY_BOUND_ALL_MODES_LO

This constraint provides lower bounds of a technology activity across all modes and vintages.

\[\sum_{y^V \leq y, m} \text{ACT}_{n,t,y^V,y,m,h} \geq \text{bound_activity_lo}_{n,t,y,'all',h}\]

We assume that \(\text{bound_activity_lo}_{n,t,y,'all',h} = 0\)
unless explicitly stated otherwise.

Constraints on shares of technologies and commodities

This section allows to include upper and lower bounds on the shares of modes used by a technology
or the shares of commodities produced or consumed by groups of technologies.

Share constraints on activity by mode

Equation SHARES_MODE_UP

This constraint provides upper bounds of the share of the activity of one mode
of a technology. For example, it could limit the share of heat that can be produced
in a combined heat and electricity power plant.

\[\text{ACT}_{n^L,t,y^V,y,m,h^A}
\leq \text{share_mode_up}_{p,n,t,y,m,h} \cdot
\sum_{m'} \text{ACT}_{n^L,t,y^V,y,m',h^A}\]

Equation SHARES_MODE_LO

This constraint provides lower bounds of the share of the activity of one mode of a technology.

\[\text{ACT}_{n^L,t,y^V,y,m,h^A}
\geq \text{share_mode_lo}_{p,n,t,y,m,h} \cdot
\sum_{m'} \text{ACT}_{n^L,t,y^V,y,m',h^A}\]

Share constraints on commodities

These constraints allow to set upper and lower bound on the quantity of commodities produced or consumed by a group
of technologies relative to the commodities produced or consumed by another group.

The implementation is generic and flexible, so that any combination of commodities, levels, technologies and nodes
can be put in relation to any other combination.

The notation \(P^{\text{share}}\) represents the mapping set map_shares_commodity_share denoting all technology types,
nodes, commodities and levels to be included in the numerator, and \(P^{\text{total}}\) is
the equivalent mapping set map_shares_commodity_total for the denominator.

Equation SHARE_CONSTRAINT_COMMODITY_UP

\[\begin{split}& \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y, (n,\widehat{t},m,c,l) \sim P^{\text{share}}}}
 (\text{output}_{n^L,t,y^V,y,m,n,c,l,h^A,h} + \text{input}_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
& \quad \cdot \text{duration_time_rel}_{h,h^A} \cdot \text{ACT}_{n^L,t,y^V,y,m,h^A} \\
& \geq
 \text{share_commodity_up}_{p,n,y,h} \cdot
 \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y, (n,\widehat{t},m,c,l) \sim P^{\text{total}}}}
 (\text{output}_{n^L,t,y^V,y,m,n,c,l,h^A,h} + \text{input}_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
& \quad \cdot \text{duration_time_rel}_{h,h^A} \cdot \text{ACT}_{n^L,t,y^V,y,m,h^A}\end{split}\]

This constraint is only active if \(\text{share_commodity_up}_{p,n,y,h}\) is defined.

Equation SHARE_CONSTRAINT_COMMODITY_LO

\[\begin{split}& \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y, (n,\widehat{t},m,c,l) \sim P^{\text{share}}}}
 (\text{output}_{n^L,t,y^V,y,m,n,c,l,h^A,h} + \text{input}_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
& \quad \cdot \text{duration_time_rel}_{h,h^A} \cdot \text{ACT}_{n^L,t,y^V,y,m,h^A} \\
& \leq
 \text{share_commodity_lo}_{p,n,y,h} \cdot
 \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y, (n,\widehat{t},m,c,l) \sim P^{\text{total}}}}
 (\text{output}_{n^L,t,y^V,y,m,n,c,l,h^A,h} + \text{input}_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
& \quad \cdot \text{duration_time_rel}_{h,h^A} \cdot \text{ACT}_{n^L,t,y^V,y,m,h^A}\end{split}\]

This constraint is only active if \(\text{share_commodity_lo}_{p,n,y,h}\) is defined.

Dynamic constraints on new capacity and activity

The constraints in this section specify dynamic upper and lower bounds on new capacity and activity.
These can be used to model limits on market penetration and/or rates of expansion or phase-out of a technology.

The formulation directly includes the option for ‘soft’ relaxations of dynamic constraints
(cf. Keppo and Strubegger, 2010 [5]).

See also the corresponding parameter definitions.

Equation NEW_CAPACITY_CONSTRAINT_UP

The level of new capacity additions cannot be greater than an initial value (compounded over the period duration),
annual growth of the existing ‘capital stock’, and a “soft” relaxation of the upper bound.

\[\begin{split}\text{CAP_NEW}_{n,t,y}
 \leq & \Bigg(~ \text{initial_new_capacity_up}_{n,t,y}
 \cdot \frac{ \Big(1 + \text{growth_new_capacity_up}_{n,t,y} \Big)^{|y|} - 1 }
 { \text{growth_new_capacity_up}_{n,t,y} } \\
 & + \Big(\text{CAP_NEW}_{n,t,y-1} + \text{historical_new_capacity}_{n,t,y-1} \Big) \\
 & \hspace{2 cm} \cdot \Big(1 + \text{growth_new_capacity_up}_{n,t,y} \Big)^{|y|} \\
 & + \text{CAP_NEW_UP}_{n,t,y} \cdot \Bigg(\Big(1 + \text{soft_new_capacity_up}_{n,t,y}\Big)^{|y|} - 1 \Bigg)\Bigg) \\
 & * \frac{|y-1|}{|y|} \\
 & \quad \forall \ t \ \in \ T^{\text{INV}}\end{split}\]

Here, \(|y|\) is the number of years in period \(y\), i.e., \(\text{duration_period}_{y}\).

Equation NEW_CAPACITY_SOFT_CONSTRAINT_UP

This constraint ensures that the relaxation of the dynamic constraint on new capacity (investment) does not exceed
the level of the investment in the previous period (cf. Keppo and Strubegger, 2010 [5]).

\[\begin{split}\text{CAP_NEW_UP}_{n,t,y} \leq \sum_{y-1} \text{CAP_NEW}_{n^L,t,y-1} & \text{if } y \neq \text{'first_period'} \\
 + \sum_{y-1} \text{historical_new_capacity}_{n^L,t,y-1} & \text{if } y = \text{'first_period'} \\
 \quad \forall \ t \ \in \ T^{\text{INV}}\end{split}\]

Equation NEW_CAPACITY_CONSTRAINT_LO

This constraint gives dynamic lower bounds on new capacity.

\[\begin{split}\text{CAP_NEW}_{n,t,y}
 \geq & \Bigg(- \text{initial_new_capacity_lo}_{n,t,y}
 \cdot \frac{ \Big(1 + \text{growth_new_capacity_lo}_{n,t,y} \Big)^{|y|} }
 { \text{growth_new_capacity_lo}_{n,t,y} } \\
 & + \Big(\text{CAP_NEW}_{n,t,y-1} + \text{historical_new_capacity}_{n,t,y-1} \Big) \\
 & \hspace{2 cm} \cdot \Big(1 + \text{growth_new_capacity_lo}_{n,t,y} \Big)^{|y|} \\
 & - \text{CAP_NEW_LO}_{n,t,y} \cdot \Bigg(\Big(1 + \text{soft_new_capacity_lo}_{n,t,y}\Big)^{|y|} - 1 \Bigg)\Bigg) \\
 & * \frac{|y-1|}{|y|} \\
 & \quad \forall \ t \ \in \ T^{\text{INV}}\end{split}\]

Equation NEW_CAPACITY_SOFT_CONSTRAINT_LO

This constraint ensures that the relaxation of the dynamic constraint on new capacity does not exceed
level of the investment in the previous year.

\[\begin{split}\text{CAP_NEW_LO}_{n,t,y} \leq \sum_{y-1} \text{CAP_NEW}_{n^L,t,y-1} & \text{if } y \neq \text{'first_period'} \\
 + \sum_{y-1} \text{historical_new_capacity}_{n^L,t,y-1} & \text{if } y = \text{'first_period'} \\
 \quad \forall \ t \ \in \ T^{\text{INV}}\end{split}\]

Equation ACTIVITY_CONSTRAINT_UP

This constraint gives dynamic upper bounds on the market penetration of a technology activity.

\[\begin{split}\sum_{y^V \leq y,m} \text{ACT}_{n,t,y^V,y,m,h}
 \leq & ~ \text{initial_activity_up}_{n,t,y,h}
 \cdot \frac{ \Big(1 + \text{growth_activity_up}_{n,t,y,h} \Big)^{|y|} - 1 }
 { \text{growth_activity_up}_{n,t,y,h} } \\
 & + \bigg(\sum_{y^V \leq y-1,m} \text{ACT}_{n,t,y^V,y-1,m,h}
 + \sum_{m} \text{historical_activity}_{n,t,y-1,m,h} \bigg) \\
 & \hspace{2 cm} \cdot \Big(1 + \text{growth_activity_up}_{n,t,y,h} \Big)^{|y|} \\
 & + \text{ACT_UP}_{n,t,y,h} \cdot \Bigg(\Big(1 + \text{soft_activity_up}_{n,t,y,h} \Big)^{|y|} - 1 \Bigg)\end{split}\]

Equation ACTIVITY_SOFT_CONSTRAINT_UP

This constraint ensures that the relaxation of the dynamic activity constraint does not exceed the
level of the activity in the previous period.

\[\begin{split}\text{ACT_UP}_{n,t,y,h} \leq \sum_{y^V \leq y,m,y-1} \text{ACT}_{n^L,t,y^V,y-1,m,h} & \text{if } y \neq \text{'first_period'} \\
 + \sum_{m,y-1} \text{historical_activity}_{n^L,t,y-1,m,h} & \text{if } y = \text{'first_period'}\end{split}\]

Equation ACTIVITY_CONSTRAINT_LO

This constraint gives dynamic lower bounds on the market penetration of a technology activity.

\[\begin{split}\sum_{y^V \leq y,m} \text{ACT}_{n,t,y^V,y,m,h}
 \geq & - \text{initial_activity_lo}_{n,t,y,h}
 \cdot \frac{ \Big(1 + \text{growth_activity_lo}_{n,t,y,h} \Big)^{|y|} - 1 }
 { \text{growth_activity_lo}_{n,t,y,h} } \\
 & + \bigg(\sum_{y^V \leq y-1,m} \text{ACT}_{n,t,y^V,y-1,m,h}
 + \sum_{m} \text{historical_activity}_{n,t,y-1,m,h} \bigg) \\
 & \hspace{2 cm} \cdot \Big(1 + \text{growth_activity_lo}_{n,t,y,h} \Big)^{|y|} \\
 & - \text{ACT_LO}_{n,t,y,h} \cdot \Bigg(\Big(1 + \text{soft_activity_lo}_{n,t,y,h} \Big)^{|y|} - 1 \Bigg)\end{split}\]

Equation ACTIVITY_SOFT_CONSTRAINT_LO

This constraint ensures that the relaxation of the dynamic activity constraint does not exceed the
level of the activity in the previous period.

\[\begin{split}\text{ACT_LO}_{n,t,y,h} \leq \sum_{y^V \leq y,m,y-1} \text{ACT}_{n^L,t,y^V,y-1,m,h} & \text{if } y \neq \text{'first_period'} \\
 + \sum_{m,y-1} \text{historical_activity}_{n^L,t,y-1,m,h} & \text{if } y = \text{'first_period'}\end{split}\]

Emission section

Auxiliary variable for aggregate emissions

Equation EMISSION_EQUIVALENCE

This constraint simplifies the notation of emissions aggregated over different technology types
and the land-use model emulator. The formulation includes emissions from all sub-nodes \(n^L\) of \(n\).

\[\begin{split}\text{EMISS}_{n,e,\widehat{t},y} =
 \sum_{n^L \in N(n)} \Bigg(
 \sum_{t \in T(\widehat{t}),y^V \leq y,m,h }
 \text{emission_factor}_{n^L,t,y^V,y,m,e} \cdot \text{ACT}_{n^L,t,y^V,y,m,h} \\
 + \sum_{s} \ \text{land_emission}_{n^L,s,y,e} \cdot \text{LAND}_{n^L,s,y}
 \text{ if } \widehat{t} \in \widehat{T}^{LAND} \Bigg)\end{split}\]

Bound on emissions

Equation EMISSION_CONSTRAINT

This constraint enforces upper bounds on emissions (by emission type). For all bounds that include multiple periods,
the parameter \(\text{bound_emission}_{n,\widehat{e},\widehat{t},\widehat{y}}\) is scaled to represent average annual
emissions over all years included in the year-set \(\widehat{y}\).

The formulation includes historical emissions and allows to model constraints ranging over both the model horizon
and historical periods.

\[\begin{split}\frac{
 \sum_{y' \in Y(\widehat{y}), e \in E(\widehat{e})}
 \begin{array}{l}
 \text{duration_period}_{y'} \cdot \text{emission_scaling}_{\widehat{e},e} \cdot \\
 \Big(\text{EMISS}_{n,e,\widehat{t},y'} + \sum_{m} \text{historical_emission}_{n,e,\widehat{t},y'} \Big)
 \end{array}
 }
 { \sum_{y' \in Y(\widehat{y})} \text{duration_period}_{y'} }
\leq \text{bound_emission}_{n,\widehat{e},\widehat{t},\widehat{y}}\end{split}\]

Land-use model emulator section

Bounds on total land use

Equation LAND_CONSTRAINT

This constraint enforces a meaningful result of the land-use model emulator,
in particular a bound on the total land used in MESSAGEix.
The linear combination of land scenarios must be equal to 1.

\[\sum_{s \in S} \text{LAND}_{n,s,y} = 1\]

Dynamic constraints on land use

These constraints enforces upper and lower bounds on the change rate per land scenario.

Equation DYNAMIC_LAND_SCEN_CONSTRAINT_UP

\[\begin{split}\text{LAND}_{n,s,y}
 \leq & \text{initial_land_scen_up}_{n,s,y}
 \cdot \frac{ \Big(1 + \text{growth_land_scen_up}_{n,s,y} \Big)^{|y|} - 1 }
 { \text{growth_land_scen_up}_{n,s,y} } \\
 & + \big(\text{LAND}_{n,s,y-1} + \text{historical_land}_{n,s,y-1} \big)
 \cdot \Big(1 + \text{growth_land_scen_up}_{n,s,y} \Big)^{|y|}\end{split}\]

Equation DYNAMIC_LAND_SCEN_CONSTRAINT_LO

\[\begin{split}\text{LAND}_{n,s,y}
 \geq & - \text{initial_land_scen_lo}_{n,s,y}
 \cdot \frac{ \Big(1 + \text{growth_land_scen_lo}_{n,s,y} \Big)^{|y|} - 1 }
 { \text{growth_land_scen_lo}_{n,s,y} } \\
 & + \big(\text{LAND}_{n,s,y-1} + \text{historical_land}_{n,s,y-1} \big)
 \cdot \Big(1 + \text{growth_land_scen_lo}_{n,s,y} \Big)^{|y|}\end{split}\]

These constraints enforces upper and lower bounds on the change rate per land type
determined as a linear combination of land use scenarios.

Equation DYNAMIC_LAND_TYPE_CONSTRAINT_UP

\[\begin{split}\sum_{s \in S} \text{land_use}_{n,s,y,u} &\cdot \text{LAND}_{n,s,y}
 \leq \text{initial_land_up}_{n,y,u}
 \cdot \frac{ \Big(1 + \text{growth_land_up}_{n,y,u} \Big)^{|y|} - 1 }
 { \text{growth_land_up}_{n,y,u} } \\
 & + \Big(\sum_{s \in S} \big(\text{land_use}_{n,s,y-1,u}
 + \text{dynamic_land_up}_{n,s,y-1,u} \big) \\
 & \quad \quad \cdot \big(\text{LAND}_{n,s,y-1} + \text{historical_land}_{n,s,y-1} \big) \Big) \\
 & \quad \cdot \Big(1 + \text{growth_land_up}_{n,y,u} \Big)^{|y|}\end{split}\]

Equation DYNAMIC_LAND_TYPE_CONSTRAINT_LO

\[\begin{split}\sum_{s \in S} \text{land_use}_{n,s,y,u} &\cdot \text{LAND}_{n,s,y}
 \geq - \text{initial_land_lo}_{n,y,u}
 \cdot \frac{ \Big(1 + \text{growth_land_lo}_{n,y,u} \Big)^{|y|} - 1 }
 { \text{growth_land_lo}_{n,y,u} } \\
 & + \Big(\sum_{s \in S} \big(\text{land_use}_{n,s,y-1,u}
 + \text{dynamic_land_lo}_{n,s,y-1,u} \big) \\
 & \quad \quad \cdot \big(\text{LAND}_{n,s,y-1} + \text{historical_land}_{n,s,y-1} \big) \Big) \\
 & \quad \cdot \Big(1 + \text{growth_land_lo}_{n,y,u} \Big)^{|y|}\end{split}\]

Section of generic relations (linear constraints)

This feature is intended for development and testing only - all new features should be implemented
as specific new mathematical formulations and associated sets & parameters!

Auxiliary variable for left-hand side

Equation RELATION_EQUIVALENCE

\[\begin{split}\text{REL}_{r,n,y} = \sum_{t} \Bigg(
 & \ \text{relation_new_capacity}_{r,n,y,t} \cdot \text{CAP_NEW}_{n,t,y} \\[4 pt]
 & + \text{relation_total_capacity}_{r,n,y,t} \cdot \sum_{y^V \leq y} \ \text{CAP}_{n,t,y^V,y} \\
 & + \sum_{n^L,y',m,h} \ \text{relation_activity}_{r,n,y,n^L,t,y',m} \\
 & \quad \quad \cdot \Big(\sum_{y^V \leq y'} \text{ACT}_{n^L,t,y^V,y',m,h}
 + \text{historical_activity}_{n^L,t,y',m,h} \Big) \Bigg)\end{split}\]

The parameter \(\text{historical_new_capacity}_{r,n,y}\) is not included here, because relations can only be active
in periods included in the model horizon and there is no “writing” of capacity relation factors across periods.

Upper and lower bounds on user-defined relations

Equation RELATION_CONSTRAINT_UP

\[\text{REL}_{r,n,y} \leq \text{relation_upper}_{r,n,y}\]

Equation RELATION_CONSTRAINT_LO

\[\text{REL}_{r,n,y} \geq \text{relation_lower}_{r,n,y}\]

Storage section

MESSAGEix offers a set of equations to represent a wide range of storage solutions flexibly.
Storage solutions are modeled as “technologies” that can be used to store a “commodity” (e.g., water, heat, electricity, etc.)
and shift it over sub-annual time slices within one model period. The storage solution presented here has three
distinct parts: (i) Charger: a technology for charging a commodity to the storage container,
for example, a pump in a pumped hydropower storage (PHS) plant. (ii) Discharger: a technology
to convert the stored commodity to the output commodity, e.g., a turbine in PHS.
(iii) Storage container: a device for storing a commodity over time, such as a water reservoir in PHS.
If desired, the user can combine charger and discharger parts into one technology, using two different “modes” of operation
for that technology like turbo-machinery in PHS. This way the capacity related information, like investment cost, lifetime, capacity factor, etc.,
will be defined only for one technology (i.e., charger-discharger), as opposed to modeling these two parts separately.

[image: ../../_images/storage.png]

Storage equations

The content of storage device depends on three factors: charge or discharge in
one time slice (represented by Equation STORAGE_CHANGE), linked to the state of charge in the previous
time slice and storage losses between these two consecutive time slices (represented by Equation STORAGE_BALANCE).
Moreover, the storage device can be optionally filled with an initial value as percentage of its capacity (see more details under Equation STORAGE_BALANCE_INIT).
Another option is to link a commodity for maintaining the operation of storage device over time (see Equation STORAGE_INPUT).

Equation STORAGE_CHANGE

This equation shows the change in the content of the storage container in each
sub-annual time slice. This change is based on the activity of charger and discharger
technologies connected to that storage container. The notation \(S^{\text{storage}}\)
represents the mapping set map_tec_storage denoting charger-discharger
technologies connected to a specific storage container in a specific node and
storage level. Where:

	\(t^{C}\) is a charging technology and \(t^{D}\) is the corresponding discharger.

	\(h-1\) is the time slice prior to \(h\).

	\(l^{T}\) is lvl_temporal, i.e., the temporal level at which storage is operating

	\(m^{S}\) is mode of operation for storage container technology

\[\begin{split}\text{STORAGE_CHARGE}_{n,t,m^s,l,c,y,h} =
 \sum_{\substack{n^L,m,h-1 \\ y^V \leq y, (n,t^C,t,l,y) \sim S^{\text{storage}}}} \text{output}_{n^L,t^C,y^V,y,m,n,c,l,h-1,h}
 \cdot & \text{ACT}_{n^L,t^C,y^V,y,m,h-1} \\
 - \sum_{\substack{n^L,m,c,h-1 \\ y^V \leq y, (n,t^D,t,l,y) \sim S^{\text{storage}}}} \text{input}_{n^L,t^D,y^V,y,m,n,c,l,h-1,h}
 \cdot \text{ACT}_{n^L,t^D,y^V,y,m,h-1} \quad \forall \ t \in T^{\text{STOR}}, & \forall \ l \in L^{\text{STOR}}\end{split}\]

Equation STORAGE_BALANCE

This equation ensures the commodity balance of storage technologies, where the commodity is shifted between sub-annual
time slices within a model period. If the state of charge of storage is set exogenously in one time slice through
\(\storageinitial_{ntlcyh}\), the content from the previous time slice is not carried over to this time slice.

\[\begin{split}\STORAGE_{ntmlcyh} =\ & \STORAGECHARGE_{ntmlcyh} \\
& + \STORAGE_{ntmlcy(h-1)} \cdot (1 - \storageselfdischarge_{ntmly(h-1)}) \\
\forall\ & t \in T^{\text{STOR}}, l \in L^{\text{STOR}}, \storageinitial_{ntmlcyh} = 0\end{split}\]

Equation STORAGE_BALANCE_INIT

Where \(\storageinitial_{ntlyh}\) has a non-zero value, this equation ensures that the amount of commodity stored
at the end of a sub-annual time slice is equal or greater than the initialized content of storage in the following time slice.
The values in parameter \(\storageinitial_{ntlyh}\) are percentages showing
a fraction of installed capacity of storage device (container) that can be filled initially.

\[\begin{split}\STORAGE_{ntmlcy(h-1)} \geq & \storageinitial_{ntmlcyh} \cdot \text{duration_time}_{h} \cdot \text{capacity_factor}_{n,t,y^V,y,h} \cdot \text{CAP}_{n,t,y^V,y} \\
\quad \forall \ t \ \in \ T^{\text{INV}}, \forall\ & \storageinitial_{ntmlcyh} \neq 0\end{split}\]

Equation STORAGE_INPUT

This equation links \(\STORAGE\) to an input commodity to maintain the activity (\(\ACT\)) of each active storage container technology
\(t\). This input commodity is distinct from the stored commodity. For example, in a pumped hydro storage solution, a user can link heating
for keeping the stored water warm. In this case, the input commodity is not a function of charge or discharge, but the amount of stored media in the container over time.
Therefore, the input commodity specified here is distinct from the one stored and discharged by (dis)charge technologies \(t^C,t^D\) appearing in
Equation STORAGE_CHANGE.

\[\begin{split}\STORAGE_{ntmlcy^Ah} =\ & \sum_{\{n^Ly^Vh^O \vert K\}} \durationtimerel_{hh^O} \cdot \ACT_{n^Lty^Vy^Amh^O} \\
\forall\ & n,t,l,c,m,y^A,h \vert t \in T^{\text{STOR}} \\
K:\ & \\text{input}_{n^Lty^Vy^Amn^Oclhh^O} \neq 0\end{split}\]

 Solve statement workflow

Note

This page is generated from inline documentation in MESSAGE/model_solve.gms.

Solve statement workflow

This part of the code includes the perfect-foresight, myopic and rolling-horizon model solve statements
including the required accounting of investment costs beyond the model horizon.

Perfect-foresight model

For the perfect foresight version of MESSAGEix, include all years in the model horizon and solve the entire model.
This is the standard option; the GAMS global variable %foresight%=0 by default.

\[\min_x \text{OBJ} = \sum_{y \in Y} \text{OBJ}_y(x_y)\]

Recursive-dynamic and myopic model

For the myopic and rolling-horizon models, loop over horizons and iteratively solve the model, keeping the decision
variables from prior periods fixed.
This option is selected by setting the GAMS global variable %foresight% to a value greater than 0,
where the value represents the number of years that the model instance is considering when iterating over the periods
of the optimization horizon.

Loop over \(\hat{y} \in Y\), solving

\[\begin{split}\min_x \ \text{OBJ} = \sum_{y \in \hat{Y}(\hat{y})} \text{OBJ}_y(x_y) \\
\text{s.t. } x_{y'} = x_{y'}^* \quad \forall \ y' < y\end{split}\]

where \(\hat{Y}(\hat{y}) = \{y \in Y | \ |\hat{y}| - |y| < \text{optimization_horizon} \}\) and
\(x_{y'}^*\) is the optimal value of \(x_{y'}\) in iteration \(|y'|\) of the iterative loop.

The advantage of this implementation is that there is no need to ‘store’ the optimal values of all decision
variables in additional reporting parameters - the last model solve automatically includes the results over the
entire model horizon and can be imported via the ixmp interface.

 Standard output reports

Note

This page is generated from inline documentation in MESSAGE/reporting.gms.

Standard output reports

This part of the code contains the definitions and scripts for a number of standard output reports.
These default reports will be created after every MESSAGE run.

 Auxiliary investment parameters

Note

This page is generated from inline documentation in MESSAGE/scaling_investment_costs.gms.

Auxiliary investment parameters

Levelized costs excluding fuel costs

For the ‘soft’ relaxations of the dynamic constraints and the associated penalty factor in the objective function,
we need to compute the parameter \(\text{levelized_cost}_{n,t,y}\).

\[\begin{split}\text{levelized_cost}_{n,t,m,y,h} := \
 & \text{inv_cost}_{n,t,y} \cdot \frac{ \text{interestrate}_{y} \cdot \left(1 + \text{interestrate}_{y} \right)^{|y|} }
 { \left(1 + \text{interestrate}_{y} \right)^{|y|} - 1 } \\
 & + \text{fix_cost}_{n,t,y,y} \cdot \frac{ 1 }{ \sum_{h'} \text{duration_time}_{h'} \cdot \text{capacity_factor}_{n,t,y,y,h'} } \\
 & + \text{var_cost}_{n,t,y,y,m,h}\end{split}\]

where \(|y| = \text{technical_lifetime}_{n,t,y}\). This formulation implicitly assumes constant fixed
and variable costs over time.

Warning:
Levelized capital costs do not include fuel-related costs.
All soft relaxations of the dynamic activity constraint are
disabled if the levelized costs are negative!

Construction time accounting

If the construction of new capacity takes a significant amount of time,
investment costs have to be scaled up accordingly to account for the higher capital costs.

\[\text{construction_time_factor}_{n,t,y} = \left(1 + \text{interestrate}_y \right)^{|y|}\]

where \(|y| = \text{construction_time}_{n,t,y}\). If no construction time is specified, the default value of the
investment cost scaling factor defaults to 1. The model assumes that the construction time only plays a role
for the investment costs, i.e., each unit of new-built capacity is available instantaneously.

Comment: This formulation applies the discount rate of the vintage year
(i.e., the year in which the new capacity becomes operational).

Investment costs beyond the model horizon

If the technical lifetime of a technology exceeds the model horizon \(Y^{\text{model}}\), the model has to add
a scaling factor to the investment costs (\(\text{end_of_horizon_factor}_{n,t,y}\)). Assuming a constant
stream of revenue (marginal value of the capacity constraint), this can be computed by annualizing investment costs
from the condition that in an optimal solution, the investment costs must equal the discounted future revenues,
if the investment variable \(\text{CAP_NEW}_{n,t,y} > 0\):

\[\text{inv_cost}_{n,t,y^V} = \sum_{y \in Y^{\text{lifetime}}_{n,t,y^V}} \text{df_year}_{y} \cdot \beta_{n,t},\]

Here, \(\beta_{n,t} > 0\) is the dual variable to the capacity constraint (assumed constant over future periods)
and \(Y^{\text{lifetime}}_{n,t,y^V}\) is the set of periods in the lifetime of a plant built in period \(y^V\).
Then, the scaling factor \(\text{end_of_horizon_factor}_{n,t,y^V}\) can be derived as follows:

\[\text{end_of_horizon_factor}_{n,t,y^V} :=
\frac{\sum_{y \in Y^{\text{lifetime}}_{n,t,y^V} \cap Y^{\text{model}}} \text{df_year}_{y} }
 {\sum_{y' \in Y^{\text{lifetime}}_{n,t,y^V}} \text{df_year}_{y'} + \text{beyond_horizon_factor}_{n,t,y^V} }
\in (0,1],\]

where the parameter \(\text{beyond_horizon_factor}_{n,t,y^V}\) accounts for the discount factor beyond the
overall model horizon (the set \(Y\) in contrast to the set \(Y^{\text{model}} \subseteq Y\) of the periods
included in the current model iteration (see the page on the recursive-dynamic model solution approach).

\[\text{beyond_horizon_lifetime}_{n,t,y^V} := \max \Big\{ 0,
 \text{economic_lifetime}_{n,t,y^V} - \sum_{y' \geq y^V} \text{duration_period}_{y'} \Big\}\]

\[\text{beyond_horizon_factor}_{n,t,y^V} :=
 \text{df_year}_{\widehat{y}} \cdot \frac{1}{ \left(1 + \text{interestrate}_{\widehat{y}} \right)^{|\widehat{y}|} }
 \cdot \frac{ 1 - \left(\frac{1}{1 + \text{interestrate}_{\widehat{y}}} \right)^{|\widetilde{y}|}}
 { 1 - \frac{1}{1 + \text{interestrate}_{\widehat{y}}}}\]

where \(\widehat{y}\) is the last period included in the overall model horizon,
\(|\widehat{y}| = \text{duration_period}_{\widehat{y}}\)
and \(|\widetilde{y}| = \text{beyond_horizon_lifetime}_{n,t,y^V}\).

If the interest rate is zero, i.e., \(\text{interestrate}_{\widehat{y}} = 0\),
the parameter \(\text{beyond_horizon_factor}_{n,t,y^V}\) equals the remaining technical lifetime
beyond the model horizon and the parameter \(\text{end_of_horizon_factor}_{n,t,y^V}\) equals
the share of technical lifetime within the model horizon.

Possible extension: Instead of assuming \(\beta_{n,t}\) to be constant over time, one could include
a simple (linear) projection of \(\beta_{n,t,y}\) beyond the end of the model horizon. However, this would likely
require to include the computation of dual variables endogenously, and thus a mixed-complementarity formulation of
the model.

Remaining installed capacity

The model has to take into account that the technical lifetime of a technology may not coincide with the cumulative
period duration. Therefore, the model introduces the parameter \(\text{remaining_capacity}_{n,t,y^V,y}\)
as a factor of remaining technical lifetime in the last period of operation divided by the duration of that period.

 MACRO core formulation

Note

This page is generated from inline documentation in MACRO/macro_core.gms.

MACRO core formulation

MACRO is a macroeconomic model maximizing the intertemporal utility function of a single representative producer-consumer
in each node (or macro-economic region). The optimization result is a sequence of optimal savings, investment, and consumption decisions.
The main variables of the model are the capital stock, available labor, and commodity inputs, which together determine the
total output of an economy according to a nested constant elasticity of substitution (CES) production function. End-use service
demands in the (commercial) demand categories of MESSAGE is determined within the model, and is consistent with commodity
supply curves, which are inputs to the model.

Notation declaration

The following short notation is used in the mathematical description relative to the GAMS code:

	Math Notation

	GAMS set & index notation

	Description

	\(n\)

	node (or node_active in loops)

	spatial node corresponding to the macro-economic MESSAGE regions

	\(y\)

	year

	year (2005, 2010, 2020, …, 2100)

	\(s\)

	sector

	sector corresponding to the (commercial) end-use demands of MESSAGE

A listing of all parameters used in MACRO together with a decription can be found in the table below.

	Parameter

	Description

	\(\text{duration_period}_y\)

	Number of years in time period \(y\) (forward diff)

	\(\text{total_cost}_{n,y}\)

	Total system costs in region \(n\) and period \(y\) from MESSAGE model run

	\(\text{enestart}_{n,s,y}\)

	Consumption level of (commercial) end-use services \(s\) in region \(n\) and period \(y\) from MESSAGE model run

	\(\text{eneprice}_{n,s,y}\)

	Shadow prices of (commercial) end-use services \(s\) in region \(n\) and period \(y\) from MESSAGE model run

	\(\epsilon_n\)

	Elasticity of substitution between capital-labor and total energy in region \(n\)

	\(\rho_n\)

	\(\epsilon - 1 / \epsilon\) where \(\epsilon\) is the elasticity of subsitution in region \(n\)

	\(\text{depr}_n\)

	Annual depreciation rate in region \(n\)

	\(\alpha_n\)

	Capital value share parameter in region \(n\)

	\(a_n\)

	Production function coefficient of capital and labor in region \(n\)

	\(b_{n,s}\)

	Production function coefficients of the different end-use sectors in region \(n\), sector \(s\) and period \(y\)

	\(\text{udf}_{n,y}\)

	Utility discount factor in period year in region \(n\) and period \(y\)

	\(\text{newlab}_{n,y}\)

	New vintage of labor force in region \(n\) and period \(y\)

	\(\text{grow}_{n,y}\)

	Annual growth rates of potential GDP in region \(n\) and period \(y\)

	\(\text{aeei}_{n,s,y}\)

	Autonomous energy efficiency improvement (AEEI) in region \(n\), sector \(s\) and period \(y\)

	\(\text{fin_time}_{n,y}\)

	finite time horizon correction factor in utility function in region \(n\) and period \(y\)

Decision variables

	Variable

	Definition

	Description

	\(\text{K}_{n,y}\)

	\(\text{K}_{n, y}\geq 0 ~ \forall n, y\)

	Capital stock in region \(n\) and period \(y\)

	\(\text{KN}_{n,y}\)

	\(\text{KN}_{n, y}\geq 0 ~ \forall n, y\)

	New Capital vintage in region \(n\) and period \(y\)

	\(\text{Y}_{n,y}\)

	\(\text{Y}_{n, y}\geq 0 ~ \forall n, y\)

	Total production in region \(n\) and period \(y\)

	\(\text{YN}_{n,y}\)

	\(\text{YN}_{n, y}\geq 0 ~ \forall n, y\)

	New production vintage in region \(n\) and period \(y\)

	\(\text{C}_{n,y}\)

	\(\text{C}_{n, y}\geq 0 ~ \forall n, y\)

	Consumption in region \(n\) and period \(y\)

	\(\text{I}_{n,y}\)

	\(\text{I}_{n, y}\geq 0 ~ \forall n, y\)

	Investment in region \(n\) and period \(y\)

	\(\text{PHYSENE}_{n,s,y}\)

	\(\text{PHYSENE}_{n, s, y}\geq 0 ~ \forall n, s, y\)

	Physical end-use service use in region \(n\), sector \(s\) and period \(y\)

	\(\text{PRODENE}_{n,s,y}\)

	\(\text{PRODENE}_{n, s, y}\geq 0 ~ \forall n, s, y\)

	Value of end-use service in the production function in region \(n\), sector \(s\) and period \(y\)

	\(\text{NEWENE}_{n,s,y}\)

	\(\text{NEWENE}_{n, s, y}\geq 0 ~ \forall n, s, y\)

	New end-use service in the production function in region \(n\), sector \(s\) and period \(y\)

	\(\text{EC}_{n,y}\)

	\(\text{EC} \in \left[-\infty..\infty\right]\)

	Approximation of system costs based on MESSAGE results

	\(\text{UTILITY}\)

	\(\text{UTILITY} \in \left[-\infty..\infty\right]\)

	Utility function (discounted log of consumption)

Equation UTILITY_FUNCTION

The utility function which is maximized sums up the discounted logarithm of consumption of a single representative producer-consumer over the entire time horizon
of the model.

\[\begin{split}\text{UTILITY} = \sum_{n} \bigg(& \sum_{y | (({ord}(y) > 1) \wedge ({ord}(y) < | y |))} \text{udf}_{n, y} \cdot {\log}(\text{C}_{n, y}) \cdot \text{duration_period}_{y} \\
+ &\sum_{y | ({ord}(y) = | y |) } \text{udf}_{n, y} \cdot {\log}(\text{C}_{n, y}) \cdot \big(\text{duration_period}_{y-1} + \frac{1}{\text{fin_time}_{n, y}} \big) \bigg)\end{split}\]

The utility discount rate for period \(y\) is set to \(\text{drate}_{n} - \text{grow}_{n,y}\), where \(\text{drate}_{n}\) is the discount rate used in MESSAGE, typically set to 5%,
and \(\text{grow}\) is the potential GDP growth rate. This choice ensures that in the steady state, the optimal growth rate is identical to the potential GDP growth rates \(\text{grow}\).
The values for the utility discount rates are chosen for descriptive rather than normative reasons. The term \(\frac{\text{duration_period}_{y} + \text{duration_period}_{y-1}}{2}\) mutliples the
discounted logarithm of consumption with the period length. The final period is treated separately to include a correction factor \(\frac{1}{\text{fin_time}_{n, y}}\) reflecting
the finite time horizon of the model. Note that the sum over nodes \(\text{node_active}\) is artificial, because \(\text{node_active}\) only contains one element.

Equation CAPITAL_CONSTRAINT

The following equation specifies the allocation of total production among current consumption \(\text{C}_{n, y}\), investment into building up capital stock excluding
the sectors represented in MESSAGE \(\text{I}_{n, y}\) and the MESSAGE system costs \(\text{EC}_{n, y}\) which are derived from a previous MESSAGE model run. As described in [7], the first-order
optimality conditions lead to the Ramsey rule for the optimal allocation of savings, investment and consumption over time.

\[\text{Y}_{n, y} = \text{C}_{n, y} + \text{I}_{r, y} + \text{EC}_{n, y} \qquad \forall{n, y}\]

Equation NEW_CAPITAL

The accumulation of capital in the sectors not represented in MESSAGE is governed by new capital stock equation. Net capital formation \(\text{KN}_{n,y}\) is derived from gross
investments \(\text{I}_{n,y}\) minus depreciation of previsouly existing capital stock.

\[\text{KN}_{n,y} = \text{duration_period}_{y} \cdot \text{I}_{n,y} \qquad \forall{n, y > 1}\]

Here, the initial boundary condition for the base year \(y_0\) implies for the investments that \(\text{I}_{n,y_0} = (\text{grow}_{n,y_0} + \text{depr}_{n}) \cdot \text{kgdp}_{n} \cdot \text{gdp}_{n,y_0}\).

Equation NEW_PRODUCTION

MACRO employs a nested constant elasticity of substitution (CES) production function with capital, labor and the (commercial) end-use services
represented in MESSAGE as inputs. This version of the production function is equaivalent to that in MARKAL-MACRO.

\[\text{YN}_{n,y} = { \left({a}_{n} \cdot \text{KN}_{n, y}^{ ({\rho}_{n} \cdot {\alpha}_{n}) } \cdot \text{newlab}_{n, y}^{ ({\rho}_{n} \cdot (1 - {\alpha}_{n})) } + \displaystyle \sum_{s} ({b}_{n, s} \cdot \text{NEWENE}_{n, s, y}^{{\rho}_{n}}) \right) }^{ \frac{1}{{\rho}_{n}} } \qquad \forall{ n, y > 1}\]

Equation TOTAL_CAPITAL

Equivalent to the total production equation above, the total capital stock, again excluding those sectors which are modeled in MESSAGE, is then simply a summation
of capital stock in the previous period \(y-1\), depreciated with the depreciation rate \(\text{depr}_{n}\), and the capital stock added in the current period \(y\).

\[\text{K}_{n, y} = \text{K}_{n, y-1} \cdot { \left(1 - \text{depr}_n \right) }^{\text{duration_period}_{y}} + \text{KN}_{n, y} \qquad \forall{ n, y > 1}\]

Equation TOTAL_PRODUCTION

Total production in the economy (excluding energy sectors) is the sum of production from assets that were already existing in the previous period \(y-1\),
depreciated with the depreciation rate \(\text{depr}_{n}\), and the new vintage of production from period \(y\).

\[\text{Y}_{n, y} = \text{Y}_{n, y-1} \cdot { \left(1 - \text{depr}_n \right) }^{\text{duration_period}_{y}} + \text{YN}_{n, y} \qquad \forall{ n, y > 1}\]

Equation NEW_ENERGY

Total energy production (across the six commerical energy demands \(s\)) is the sum of production from all assets that were already existing
in the previous period \(y-1\), depreciated with the depreciation rate \(\text{depr}_{n}\), and the the new vintage of energy production from
period \(y\).

\[\text{PRODENE}_{n, s, y} = \text{PRODENE}_{n, s, y-1} \cdot { \left(1 - \text{depr}_n \right) }^{\text{duration_period}_{y}} + \text{NEWENE}_{n, s, y} \qquad \forall{ n, s, y > 1}\]

Equation ENERGY_SUPPLY

The relationship below establishes the link between physical energy \(\text{PHYSENE}_{r, s, y}\) as accounted in MESSAGE for the six commerical energy demands \(s\) and
energy in terms of monetary value \(\text{PRODENE}_{n, s, y}\) as specified in the production function of MACRO.

\[\text{PHYSENE}_{n, s, y} \geq \text{PRODENE}_{n, s, y} \cdot \text{aeei_factor}_{n, s, y} \qquad \forall{ n, s, y > 1}\]

The cumulative effect of autonomous energy efficiency improvements (AEEI) is captured in
\(\text{aeei_factor}_{n,s,y} = \text{aeei_factor}_{n, s, y-1} \cdot (1 - \text{aeei}_{n,s,y})^{\text{duration_period}_{y}}\)
with \(\text{aeei_factor}_{n,s,y=1} = 1\). Therefore, choosing the \(\text{aeei}_{n,s,y}\) coefficients appropriately offers the possibility to calibrate MACRO to a certain energy demand trajectory
from MESSAGE.

Equation COST_ENERGY

Energy system costs are based on a previous MESSAGE model run. The approximation of energy system costs in vicinity of the MESSAGE solution are approximated by a Taylor expansion with the
first order term using shadow prices \(\text{eneprice}_{s, y, n}\) of the MESSAGE model’s solution and a quadratic second-order term.

\[\begin{split}\text{EC}_{n, y} = & \text{total_cost}_{n, r} \\
+ & \displaystyle \sum_{s} \text{eneprice}_{s, y, n} \cdot \left(\text{PHYSENE}_{n, s, y} - \text{enestart}_{s, y, n} \right) \\
+ & \displaystyle \sum_{s} \frac{\text{eneprice}_{s, y, n}}{\text{enestart}_{s, y, n}} \cdot \left(\text{PHYSENE}_{n, s, y} - \text{enestart}_{s, y, n} \right)^2 \qquad \forall{ n, y > 1}\end{split}\]

Equation TERMINAL_CONDITION

Given the finite time horizon of MACRO, a terminal constraint needs to be applied to ensure that investments are chosen at an appropriate level, i.e. to replace depriciated capital and
provide net growth of capital stock beyond MACRO’s time horizon [7]. The goal is to avoid to the extend possible model artifacts resulting from this finite time horizon
cutoff.

\[\text{K}_{n, y} \cdot \left(\text{grow}_{n, y} + \text{depr}_n \right) \leq \text{I}_{n, y} \qquad \forall{ n, y = \text{last year}}\]

 Efficiency - output- vs. input defined technologies

Efficiency - output- vs. input defined technologies

There is no obvious approach whether a model should be formulated
in a way that treats technologies as parametrized to input or output commodities/fuels -
power plant parameters are usually understood as output-based (per unit of electricity generated),
while refinery parameters are usually based on input fuels (per unit of input commodity processed.
Things become even trickier when technologies have multiple inputs or outputs.
Standardizing the methodology and assumptions can become quite a challenge.

For the implementation of MESSAGEix, we opted to formulate the model in an agnostic manner,
so that for each technology, the most “appropriate” parametrization can be applied.
As an additional benefit, we do not need to define an explicit efficiency parameter
or “main” input and output fuels.

The recommended approach is illustrated below for multiple examples.
The decision variables \(\text{CAP_NEW}\), \(\text{CAP}\) and \(\text{ACT}\) as well as all bounds
are always understood to be in the same units. All cost parameters also have to be provided
in monetary units per these units - there is no “automatic rescaling” done either within the ixmp API
or in the GAMS implementation pre- or postprocessing.

Example 1 - Power plants

Technical specifications of power plants are commonly stated in terms of electricity generated (output).
Therefore, the decision variables should be understood as outputs, with the parameter \(\text{output} = 1\)
and parameter \(\text{input} = \frac{1}{\text{efficiency}}\). This may seem counter-intuitive at first, but the clear
advantage is that all technical parameters can be immediately related to values found in the literature.

Example 2 - Refineries

For crude oil refineries, it is more common to scale costs and emissions
in terms of crude oil input quantities. Hence, the parameter \(\text{input} = 1\)
and the output parameters (usually for multiple different oil products)
should be set accordingly.

The decision variables and bounds are then implicitly understood as input-based.

An alternative would be to parametrize a refinery based on outputs, but
considering that there are multiple outputs (in fixed proportions),
the sum of output parameters over all products should be set to 1,
i.e., \(\sum_{c} \text{output}_{c} = 1\). The input of crude oil should then
include the losses during the refining process, \(\text{input} > 1\).

Example 3 - Combined power- and heat plants

As a third option, technical specifications of combined heat- and power plants
are usually also given with regard to electricity generated under the
assumption that the electricity generated is maximized. Then, as in example 1,
the capacity and activity variables should be understood as electricity generated.

Assuming that such a plant usually has (at least) two modes of operation, these
modes could be parametrized as follows:

\(\text{input} = \frac{1}{\text{efficiency}}\)

\(\text{output}_{\text{M1},\text{electricity}} = 1\) and \(\text{output}_{\text{M1},\text{heat}} = 0.2\)

\(\text{output}_{\text{M2},\text{electricity}} = 0.5\) and \(\text{output}_{\text{M2}, \text{heat}} = 3\).

Note that the activity level in mode ‘M2’ has an odd interpretation - the amount
of electricity generated if electricity generation were maximized. The sum of outputs
is greater than 1 in either mode. However, we believe that this approach at least
has the benefit of a parametrization that can be directly related to technical reports.

 Add model years to an existing Scenario

Add model years to an existing Scenario

Description

This tool adds new modeling years to an existing message_ix.Scenario (hereafter “reference scenario”). For instance, in a scenario define with:

history = [690]
model_horizon = [700, 710, 720]
sc_ref.add_horizon(
 year=history + model_horizon,
 firstmodelyear=model_horizon[0]
)

…additional years can be added after importing the add_year function:

from message_ix.tools.add_year import add_year
sc_new = message_ix.Scenario(mp, sc_ref.model, sc_ref.scenario,
 version='new')
add_year(sc_ref, sc_new, [705, 712, 718, 725])

At this point, sc_new will have the years [700, 705, 710, 712, 718, 720, 725], and original or interpolated data for all these years in all parameters.

The tool operates by creating a new empty Scenario (hereafter “new scenario”) and:

	Copying all sets from the reference scenario, adding new time steps to relevant sets (e.g., adding 2025 between 2020 and 2030 in the set year)

	Copying all parameters from the reference scenario, adding new years to relevant parameters, and calculating missing values for the added years.

Features

	It can be used for any MESSAGE scenario, from tutorials, country-level, and global models.

	The new years can be consecutive, between existing years, and/or after the model horizon.

	The user can define for what regions and parameters the new years should be added. This saves time when adding the new years to only one parameter of the reference scenario, when other parameters have previously been successfully added to the new scenario.

Usage

The tool can be used either:

	Directly from the command line:

$ message-ix \
 --platform default
 --model MESSAGE_Model \
 --scenario baseline \
 add-years
 --years_new 2015,2025,2035,2045

For the full list of input arguments, run:

$ message-ix add-years --help

	By calling the function add_year() from a Python script.

Technical details

	An existing scenario is loaded and the desired new years are specified.

	A new (empty) scenario is created for adding the new years.

	The new years are added to the relevant sets, year and type_year.

	The sets firstmodelyear, lastmodelyear, baseyear_macro, and initializeyear_macro are modified, if needed.

	The set cat_year is modified for the new years.

	The new years are added to the index sets of relevant parameters, and the missing data for the new years are calculated based on interpolation of adjacent data points. The following steps are applied:

	Each non-empty parameter is loaded from the reference scenario.

	The year-related indexes (0, 1, or 2) of the parameter are identified.

	The new years are added to the parameter, and the missing data is calculated based on the number of year-related indexes. For example:

	The parameter inv_cost has index year_vtg, to which the new years are added.

	The parameter output has indices year_act and year_vtg. The new years are added to both of these dimensions.

	Missing data is calculated by interpolation.

	For parameters with 2 year-related indices (e.g. output), a final check is applied so ensure that the vintaging is correct. This step is done based on the lifetime of each technology.

	The changes are committed and saved to the new scenario.

Warning

The tool does not ensure that the new scenario will solve after adding the
new years. The user needs to load the new scenario, check some key
parameters (like bounds) and solve the new scenario.

API reference

Add model years to an existing Scenario.

	
message_ix.tools.add_year.add_year(sc_ref, sc_new, years_new, firstyear_new=None, lastyear_new=None, macro=False, baseyear_macro=None, parameter='all', region='all', rewrite=True, unit_check=True, extrapol_neg=None, bound_extend=True)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/add_year/__init__.py#L90-L265]

	Add years to sc_ref to produce sc_new.

add_year() does the following:

	calls add_year_set() to add and modify required sets.

	calls add_year_par() to add new years and modifications to each
parameter if needed.

	Parameters:

	
	sc_ref (ixmp.Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario]) – Reference scenario.

	sc_new (ixmp.Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario]) – New scenario.

	yrs_new (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – New years to be added.

	firstyear_new (int [https://docs.python.org/3/library/functions.html#int], optional) – New first model year for new scenario.

	macro (bool [https://docs.python.org/3/library/functions.html#bool]) – Add new years to parameters of the MACRO model.

	baseyear_macro (int [https://docs.python.org/3/library/functions.html#int]) – New base year for the MACRO model.

	parameter (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str] or 'all') – Parameters for adding new years.

	rewrite (bool [https://docs.python.org/3/library/functions.html#bool]) – Permit rewriting a parameter in new scenario when adding new years.

	check_unit (bool [https://docs.python.org/3/library/functions.html#bool]) – Harmonize the units for each commodity, if there is inconsistency
across model years.

	extrapol_neg (float [https://docs.python.org/3/library/functions.html#float]) – When extrapolation produces negative values, replace with a multiple of
the value for the previous timestep.

	bound_extend (bool [https://docs.python.org/3/library/functions.html#bool]) – Duplicate data from the previous timestep when there is only one data
point for interpolation (e.g., permitting the extension of a bound to
2025, when there is only one value in 2020).

	
message_ix.tools.add_year.add_year_par(sc_ref, sc_new, yrs_new, parname, reg_list, firstyear_new, extrapolate=False, rewrite=True, unit_check=True, extrapol_neg=None, bound_extend=True)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/add_year/__init__.py#L371-L535]

	Add new years to parameters.

This function adds additional years to a parameter. The value of the
parameter for additional years is calculated mainly by interpolating and
extrapolating data from existing years.

See add_year() for parameter descriptions.

	
message_ix.tools.add_year.add_year_set(sc_ref, sc_new, years_new, firstyear_new=None, lastyear_new=None, baseyear_macro=None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/add_year/__init__.py#L269-L368]

	Add new years to sets.

add_year_set() adds additional years to an existing scenario, by
starting to make a new scenario from scratch. After modification of the
year-related sets, all other sets are copied from sc_ref to sc_new.

See add_year() for parameter descriptions.

	
message_ix.tools.add_year.interpolate_1d(df, yrs_new, horizon, year_col, value_col='value', extrapolate=False, extrapol_neg=None, bound_extend=True)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/add_year/__init__.py#L541-L690]

	Interpolate data with one year dimension.

This function receives a parameter data as a dataframe, and adds new data
for the additonal years by interpolation and extrapolation.

	Parameters:

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The dataframe of the parameter to which new years to be added.

	yrs_new (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – New years to be added.

	horizon (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – The horizon of the reference scenario.

	year_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The header of the column to which the new years should be added, e.g.
‘year_act’.

	value_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The header of the column containing values.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow extrapolation when a new year is outside the parameter years.

	extrapol_neg (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow negative values obtained by extrapolation.

	bound_extend (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow extrapolation of bounds for new years

	
message_ix.tools.add_year.interpolate_2d(df, yrs_new, horizon, year_ref, year_col, tec_list, par_tec, value_col='value', extrapolate=False, extrapol_neg=None, year_diff=None, bound_extend=True)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/add_year/__init__.py#L696-L990]

	Interpolate parameters with two dimensions related year.

This function receives a dataframe that has 2 time-related columns (e.g.,
“input” or “relation_activity”), and adds new data for the additonal years
in both time-related columns by interpolation and extrapolation.

	Parameters:

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The dataframe of the parameter to which new years to be added.

	yrs_new (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – New years to be added.

	horizon (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – The horizon of the reference scenario.

	year_ref (str [https://docs.python.org/3/library/stdtypes.html#str]) – The header of the first column to which the new years should be added,
e.g. ‘year_vtg’.

	year_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The header of the column to which the new years should be added, e.g.
‘year_act’.

	tec_list (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – List of technologies in the parameter technical_lifetime.

	par_tec (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Parameter technical_lifetime.

	value_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The header of the column containing values.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow extrapolation when a new year is outside the parameter years.

	extrapol_neg (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow negative values obtained by extrapolation.

	year_diff (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – List of model years with different time intervals before and after them

	bound_extend (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow extrapolation of bounds for new years based on one data point

	
message_ix.tools.add_year.intpol(y1, y2, x1, x2, x)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/add_year/__init__.py#L23-L39]

	Interpolate between (x1, y1) and (x2, y2) at x.

	Parameters:

	
	y1 (float [https://docs.python.org/3/library/functions.html#float] or pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]) –

	y2 (float [https://docs.python.org/3/library/functions.html#float] or pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]) –

	x1 (int [https://docs.python.org/3/library/functions.html#int]) –

	x2 (int [https://docs.python.org/3/library/functions.html#int]) –

	x (int [https://docs.python.org/3/library/functions.html#int]) –

	
message_ix.tools.add_year.mask_df(df, index, count, value)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/add_year/__init__.py#L63-L70]

	Create a mask for removing extra values from df.

	
message_ix.tools.add_year.slice_df(df, idx, level, locator, value)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/add_year/__init__.py#L41-L61]

	Slice a MultiIndex DataFrame and set a value to a specific level.

	Parameters:

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) –

	idx (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Columns to set as index.

	level (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	locator (list [https://docs.python.org/3/library/stdtypes.html#list]) –

	value (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
message_ix.tools.add_year.unit_uniform(df)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/add_year/__init__.py#L72-L84]

	Make units in df uniform.

 lp_diag: basic diagnostics of linear program (LP) problems

lp_diag: basic diagnostics of linear program (LP) problems

	Description

	Features

	Usage

	Becoming familiar with LPdiag

	Generation of the MPS file in the message_ix environment

	Actual analysis

	Summary of the provided analysis results

	API reference

Description

LPdiag provides basic information about the LP programming problems defined by corresponding MPS-format files.
The diagnostics focuses on the implied numerical properties of the underlying optimization problem.

In this context, the term outlier denotes the model entities having values in either lower or upper tail of the corresponding value distribution.
The tails are defined by the corresponding orders of magnitudes defined as \(int(alog(abs(val)))\), where val stands for the value of the corresponding coefficient.
The default values of the tails are equal to \((-6, 6)\), respectively; they can be redefined, if desired.

The rule of thumb says: the maximum and minimum orders of magnitudes of the LP matrix coefficients passed to optimization should differ by at most four.
LPdiag helps to achieve such a goal by providing info on outliers.
Such info can be used e.g., for:

	reconsideration of measurement units of the corresponding variables and relations,

	consideration of replacing small (in relations to other coefficients in the same row or column) elements by zero,

	splitting the corresponding rows and/or columns,

	verification of the coefficients’ values.

Features

The current LPdiag version provides the following information:

	characteristics of the problem (including numbers of rows, columns, non-zero coefficients and distributions of their values),

	distributions of diverse values characterizing the LP matrix,

	location (row and column) of each outlier,

	ranges of values of other coefficients in each such row or column, as well as the corresponding bounds (LHS, RHS for rows, lower and upper bounds for columns).

The functionality of LPdiag will be gradually enhanced to meet actual needs of the message_ix modelers.

Usage

The tool analyzes provided MPS-format files.
We provide several small MPS files for testing local installations in message_ix/tests/data/lp_diag/, as well as becoming familiar with LPdiag.
The small MPS files are structured as follows:

	aez.mps: agro-ecological zones, medium size.

	diet.mps: classical small LP.

	jg_korh.mps: tiny testing problem.

	lotfi.mps: classical medium size.

	error_*.mps: various MPS-specs testing error-handling logic in the code.

Hints on generating MPS files are provided below.
Feel free to store arbitrary large MPS files in message_ix/tools/lp_diag/data/mps/, but note that these should not be committed to GitHub.

We suggest the following steps for becoming familiar with LPdiag and then use it for analysis of actual MPS files:

	becoming familiar with LPdiag,

	prepare MPS file,

	actual analysis.

We outline each of these steps below.

Becoming familiar with LPdiag

Note that LPdiag should be run at the terminal prompt.

	Navigate to the folder message_ix/tools/lp_diag.

	For initial testing run the following command, which will run analysis of the default (pre-specified) MPS provided in the test_mps folder.
Other provided MPS example can be run by using the --mps option explained below.:

message-ix lp-diag

	To display the available LPdiag options run:

$ message-ix lp-diag --help
Usage: message-ix lp-diag [OPTIONS]

 Diagnostics of basic properties of LP problems stored in the MPS format.

 Examples:
 message-ix lp-diag
 message-ix lp-diag --help
 message-ix lp-diag --mps aez.mps --outp foo.txt

Options:
 --wdir PATH Working directory.
 --mps PATH MPS file name or path.
 -L, --lo-tail INTEGER Magnitude order of the lower tail (default: -7).
 -U, --up-tail INTEGER Magnitude order of the upper tail (default: 5).
 --outp PATH Path for file output.
 --help Show this message and exit.

Further details about the optional parameters:

	--wdir: specification of the desired work-directory (by default the work-directory is the same, in which LPdiag is located).

	--mps: name of the MPS file to be analysed; if the file is not located in the work-directory, then the name should include the path to the file (see the example above).

	--outp: name of the file to which the output shall be redirected.
By default the output is listed to the stdout, i.e., to the terminal window unless the redirection is included in the command.
Optionally, the output can be redirected to a specified file.
Such redirection can be specified by either using the --outp file_name option, as illustrated by the second example shown above (in the output resulting from using the -h option), or by including the redirection in the corresponding command, e.g.,:

message-ix lp-diag -h > foo.txt

	
	--lo-tail, --up-tail: These are passed to LPdiag.print_statistics().
	To obtain the numbers of coefficients at every magnitude in the MPS file, specify equal or overlapping values:

message-ix lp-diag -L 0 -U 0 --mps file.mps

Generation of the MPS file in the message_ix environment

The MPS-format is the oldest but still widely used for specification of the LP problems.
Most modeling environments provide various ways of the MPS file generation.

In the message_ix environment one can generate the MPS file e.g., upon solving a message_ix.Scenario by defining in message_ix.Scenario.solve() the writemps option together with the desired name of the MPS file.
The MPS file will then be generated and deposited in the message_ix/model/ directory.
Details are available in the GAMS-Documentation [https://www.gams.com/latest/docs/S_CPLEX.html#CPLEXwritemps]

Example of specification of the corresponding option:

scenario.solve(solve_options={"writemps": "<file_name>.mps"})

Actual analysis

For actual analysis one needs to specify the corresponding MPS file in a command run (still in the directory message_ix/tools/lp_diag):

message-ix lp-diag --mps loc/name

…where loc and name stand for the path to the directory where the MPS-file is located, and name stands for the corresponding file-name, respectively.
Other option(s) can be included in the command, as explained above.

If the output redirection is desired (e.g., for results to be shared or composed of many lines), then run:

message-ix lp-diag --mps loc/name --outp outfile.txt

Extensions in the file names are optional.
An alternative way of output redirection is explained above.

Summary of the provided analysis results

The results are composed of the following elements:

	Info on the work-directory.

	Info during reading the MPS file:

	Should a syntax error occur during reading the file, then the corresponding exception is thrown with the corresponding details.

	Basic info during processing of each MPS section.

	Basic attributes of the read MPS.

	Distribution of values of the objective (goal function) coefficients.

	Distribution of \(abs(val)\) of the matrix elements.

	Distribution of values of \(int(log10(abs(values)))\).

	Distribution of values of \(int(log10(abs(values)))\) sorted by magnitudes of values (magnitudes of zero-occurrences skipped).

	For each (lower and upper) tail of the matrix coefficient values of the corresponding sub-matrix:

	Distributions of diverse values (\(value, abs(val), log10(abs(val))\)) of the matrix elements.

	For each order of magnitude: number of elements

	Row-wise location of each outlier with:

	info on other coefficients in the same row, and

	order of magnitude of the row’s LHS and RHS.

	Column-wise location of each outlier with:

	info on other coefficients in the same column, and

	order of magnitude of the column’s lower and upper bounds.

	The processing start- and end-times.

API reference

Analyse MPS-format files.

	
class message_ix.tools.lp_diag.LPdiag[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L13-L921]

	Process the MPS-format input file and provide its basic diagnostics.

The diagnostics currently include:

	handling formal errors of the MPS file

	basic statistics of the matrix coefficients.

	
add_bnd(words: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], n_line: int [https://docs.python.org/3/library/functions.html#int])[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L500-L592]

	Process current line of the BOUNDS section.

The section defines both column names and values of the matrix coefficients.
One line can have either one or two matrix elements.

	Parameters:

	
	words (str [https://docs.python.org/3/library/stdtypes.html#str]) – Words of the current line.

	n_line (int [https://docs.python.org/3/library/functions.html#int]) – Sequence number of the current MPS line.

	
add_coeff(words: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], n_line: int [https://docs.python.org/3/library/functions.html#int])[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L271-L351]

	Process current line of the COLUMNS section.

The section defines both column names and values of the matrix coefficients.
One line can have either one or two matrix elements.

	Parameters:

	
	words (str [https://docs.python.org/3/library/stdtypes.html#str]) – Words of the current line.

	n_line (int [https://docs.python.org/3/library/functions.html#int]) – Sequence number of the current MPS line.

	
add_range(words: str [https://docs.python.org/3/library/stdtypes.html#str], n_line: int [https://docs.python.org/3/library/functions.html#int])[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L425-L499]

	Process current line of the RANGES section.

The section defines both column names and values of the matrix coefficients.
One line can have either one or two matrix elements.

	Parameters:

	
	words (str [https://docs.python.org/3/library/stdtypes.html#str]) – Words of the current line.

	n_line (int [https://docs.python.org/3/library/functions.html#int]) – Sequence number of the current MPS line.

	
add_rhs(words: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], n_line: int [https://docs.python.org/3/library/functions.html#int])[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L352-L424]

	Process current line of the RHS section.

The section defines both column names and values of the matrix coefficients.
One line can have either one or two matrix elements.

	Parameters:

	
	words (str [https://docs.python.org/3/library/stdtypes.html#str]) – Words of the current line.

	n_line (int [https://docs.python.org/3/library/functions.html#int]) – Sequence number of the current MPS line.

	
add_row(words: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], n_line: int [https://docs.python.org/3/library/functions.html#int])[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L229-L270]

	Process current line of the ROWS section.

While processing the ROWS section the row attributes are initialized to the
default (for the corresponding row type) values. The attributes are updated for
optionally defined values in the (also optional) RHS and RANGES sections. The
interpretation of the MPS-format (in particular of values in the RANGES section)
follows the original MPS standard, see e.g., “Advanced Linear Programming,” by
Bruce A. Murtagh. or the standard summary at
https://lpsolve.sourceforge.net/5.5/mps-format.htm .

	Parameters:

	
	words (str [https://docs.python.org/3/library/stdtypes.html#str]) – Words of the current line.

	n_line (int [https://docs.python.org/3/library/functions.html#int]) – Sequence number of the current MPS line.

	
get_entity_info(mat_row: Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series], by_row: bool [https://docs.python.org/3/library/functions.html#bool] = True) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L851-L877]

	Return info on the entity (row or col) defining the given matrix coefficient.

Each row of the dataFrame contains the definition (composed of the row_seq,
col_seq, value, log(value)) of one matrix coefficient. The function returns
seq_id and name of either row or col of the currently considered coeff.

	Parameters:

	
	mat_row (pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]) – Record of the df with the data of currently processed element.

	by_row (bool [https://docs.python.org/3/library/functions.html#bool]) – True/False for returning the seq_id and name of the corresponding row/col.

	
get_entity_range(seq_id: int [https://docs.python.org/3/library/functions.html#int], by_row: bool [https://docs.python.org/3/library/functions.html#bool] = True) → str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L878-L914]

	Return formatted ranges of feasible values of either a row or a column.

The returned values of ranges are either ‘none’ (for plus/minus infinity) or
int(log10(abs(val))) for other values. Small values, defined as
abs(value) < 1e-10, are represented by 0.

	Parameters:

	
	seq_id (int [https://docs.python.org/3/library/functions.html#int]) – Sequence number of either row or col.

	by_row (bool [https://docs.python.org/3/library/functions.html#bool]) – True/False for returning the seq_id and name of the corresponding row/col.

	
locate_outliers(small: bool [https://docs.python.org/3/library/functions.html#bool] = True, thresh: int [https://docs.python.org/3/library/functions.html#int] = -7, max_rec: int [https://docs.python.org/3/library/functions.html#int] = 500)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L758-L850]

	Locations of outliers, i.e., elements having small/large coefficient values.

Locations of outliers (in the term of the matrix coefficient values). The
provided ranges of values in the corresponding row/col indicate potential of the
simple scaling.

	Parameters:

	
	small (bool [https://docs.python.org/3/library/functions.html#bool]) – True/False for threshold of either small or large coefficients

	thresh (int [https://docs.python.org/3/library/functions.html#int]) – Magnitude of the threshold (in: int(log10(abs(coeff))), i.e. -7 denotes
values < 10^(-6)).

	max_rec (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of processed coefficients.

	
plot_hist()[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L915-L921]

	Plot histograms.

Note

Not implemented.

	
print_statistics(lo_tail: int [https://docs.python.org/3/library/functions.html#int] = -7, up_tail: int [https://docs.python.org/3/library/functions.html#int] = 6)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L679-L757]

	Basic statistics of the matrix coefficients.

Focus on distributions of magnitudes of non-zero coefficients represented by
values of int(log10(abs(coeff))). Additionally, tails (low and upp) of the
distributions are reported.

	Parameters:

	
	lo_tail (int [https://docs.python.org/3/library/functions.html#int]) – Magnitude order of the low-tail (-7 denotes values < 10^(-6)).

	up_tail (int [https://docs.python.org/3/library/functions.html#int]) – Magnitude order of the upper-tail (6 denotes values >= 10^6).

	
read_mps(fname)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L62-L147]

	Process the MPS file.

	
row_att(row_seq: int [https://docs.python.org/3/library/functions.html#int], row_name: str [https://docs.python.org/3/library/stdtypes.html#str], row_type: str [https://docs.python.org/3/library/stdtypes.html#str], sec_name: str [https://docs.python.org/3/library/stdtypes.html#str], val: float [https://docs.python.org/3/library/functions.html#float] = 0.0)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/tools/lp_diag/__init__.py#L593-L678]

	Process values defined in ROWS, RHS and RANGES sections

The corresponding row attributes are stored or updated.

While processing the ROWS section the row attributes are initialized to the
default (for the corresponding row type) values. The attributes are updated for
optionally defined values in the (also optional) RHS and RANGES sections. The
interpretation of the MPS-format (in particular of values in the RANGES section)
follows the original MPS standard, see e.g., “Advanced Linear Programming,” by
Bruce A. Murtagh. or the standard summary at
https://lpsolve.sourceforge.net/5.5/mps-format.htm .

	Parameters:

	
	row_seq (int [https://docs.python.org/3/library/functions.html#int]) – Position of row in dictionaries and the matrix df.

	row_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Row name (defined in the ROWS section).

	row_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Row type (defined in the ROWS section).

	sec_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies the MPS section: either ‘rows’ (for initialization) or ‘rhs’ or
‘ranges’ (for updates).

	val (float [https://docs.python.org/3/library/functions.html#float]) – Value of the row attribute defining either lo_bnd or up_bnd of the row
(the type checked while processing the MPS section).

 Postprocessing and reporting

Postprocessing and reporting

The MESSAGEix framework provides zero-configuration reporting of models built on the framework.
The word “reporting” refers to calculations and other post-processing performed after a Scenario has been solved by the associated optimization model: first the model solution is obtained, and then things are “reported” based on that solution.

message_ix.report is developed on the basis of ixmp.report [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#module-ixmp.report] and genno [https://genno.readthedocs.io/en/latest/api.html#module-genno].
It provides a basis for other code and packages—such as message_ix_models [https://docs.messageix.org/projects/models/en/latest/index.html#module-message_ix_models]—that perform reporting calculations tailored to specific model structures.
Each layer of this “stack” builds on the features in the level below:

	Package

	Role

	Core features

	Reporting features

	message_ix_models

	MESSAGEix-GLOBIOM models

	Specific model structure (coal_ppl in t)

	Calculations for specific technologies

	message_ix

	Energy model framework

	Common sets/parameters (output)

	Derived quantities (tom)

	ixmp

	Optimization models & data

	Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario] with sets, parameters, variables

	Reporter [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#ixmp.report.Reporter] auto-populated with sets etc.

	genno

	Structured calculations

	Computer [https://genno.readthedocs.io/en/latest/api.html#genno.Computer],
Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key],
Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity]

	—

These features are accessible through Reporter, which can produce multiple reports from one or more Scenarios.
A report and the quantities that enter it is identified by a key, and may…

	perform arbitrarily complex calculations while intelligently handling units;

	read and make use of data that is ‘exogenous’ to (not included in) a Scenario;

	produce output as Python or R objects (in code), or write to files or databases;

	calculate only a requested subset of quantities; and

	much, much more!

Contents:

	Concepts

	Usage

	Customization

	API reference

	Top-level classes and functions

	Operators

	Utilities

Concepts

See Concepts and usage [https://genno.readthedocs.io/en/latest/usage.html] in the genno documentation for an introduction to concepts including quantity, key, computation, task, graph, and operator.
In message_ix.report:

	The Reporter class is an extended version of the genno.Computer [https://genno.readthedocs.io/en/latest/api.html#genno.Computer] class.

	ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] parameters, scalars, equations, and time-series data all become quantities for the purpose of reporting.

	For example, the MESSAGEix parameter resource_cost, defined with the dimensions (node n, commodity c, grade g, year y) is identified by the key resource_cost:n-c-g-y.
When summed across the grade/g dimension, it has dimensions n, c, y and is identified by the key resource_cost:n-c-y.

	Reporter.from_scenario() automatically sets up keys and tasks (such as resource_cost:n-c-g-y) that simply retrieve raw/unprocessed data from a Scenario and return it as a genno.Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity].

	Operators are defined as functions in modules including:
message_ix.report.operator,
ixmp.report.operator [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#module-ixmp.report.operator], and
genno.operator [https://genno.readthedocs.io/en/latest/api.html#module-genno.operator].
These are documented below.

Usage

A MESSAGEix reporting workflow has the following steps:

	Obtain a Scenario object from an Platform [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Platform].

	Use Reporter.from_scenario() to prepare a Reporter object with many calculations automatically prepared.

	(optionally) Use the built-in features of Reporter to describe additional calculations.

	Use get() 1 or more times to execute tasks, including all the calculations on which they depend:

from ixmp import Platform
from message_ix import Scenario, Reporter

mp = Platform()
scen = Scenario(scen)
rep = Reporter.from_scenario(scen)
rep.get("all")

Note that keys and tasks are described in steps (2–3), but they are not executed until get() is called—or the results of one task are required by another.
This design allows the Reporter to skip unneeded (and potentially slow) computations and deliver good performance.
The Reporter’s graph [https://genno.readthedocs.io/en/latest/api.html#genno.Computer.graph] may contain thousands of tasks for retrieving model quantities and calculating derived quantities, but a particular call to get() may only execute a few of these.

Customization

A Reporter prepared with from_scenario() always contains a key
scenario, referring to the Scenario to be reported.

The method Reporter.add() can be used to add arbitrary Python code that operates directly on the Scenario object:

def my_custom_report(scenario):
 """Function with custom code that manipulates the `scenario`."""
 print("Model name:", scenario.model)

Add a task at the key "custom". The task executes my_custom_report().
The key "scenario" means that the Scenario object is retrieved and
passed as an argument to the function.
rep.add("custom", (my_custom_report, "scenario"))
rep.get("custom")

In this example, the function my_custom_report() could run to thousands of lines; read to and write from multiple files; invoke other programs or Python scripts; etc.
In order to take advantage of the performance-optimizing features of the Reporter, such calculations can instead be composed from atomic (i.e. small, indivisible) operators or functions.
See the genno [https://genno.readthedocs.io/en/latest/api.html#module-genno] documentation for more.

API reference

Top-level classes and functions

message_ix.report provides:

	Reporter(*args, **kwargs)

	MESSAGEix Reporter.

The following objects from genno [https://genno.readthedocs.io/en/latest/api.html#module-genno] may also be imported from message_ix.report.
Their documentation is repeated below for convenience.

	ComputationError [https://genno.readthedocs.io/en/latest/api.html#genno.ComputationError](exc)

	Wrapper to print intelligible exception information for Computer.get() [https://genno.readthedocs.io/en/latest/api.html#genno.Computer.get].

	Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key](name_or_value[, dims, tag, _fast])

	A hashable key for a quantity that includes its dimensionality.

	KeyExistsError [https://genno.readthedocs.io/en/latest/api.html#genno.KeyExistsError]

	Raised by Computer.add() [https://genno.readthedocs.io/en/latest/api.html#genno.Computer.add] when the target key exists.

	MissingKeyError [https://genno.readthedocs.io/en/latest/api.html#genno.MissingKeyError]

	Raised by Computer.add() [https://genno.readthedocs.io/en/latest/api.html#genno.Computer.add] when a required input key is missing.

	Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity](*args, **kwargs)

	A sparse data structure that behaves like xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray].

	configure [https://genno.readthedocs.io/en/latest/config.html#genno.configure]([path])

	Configure genno [https://genno.readthedocs.io/en/latest/api.html#module-genno] globally.

ixmp.Reporter.from_scenario [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#ixmp.report.Reporter.from_scenario] automatically adds keys based on the contents of the Scenario argument;
that is, every ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] set, parameter, variable, and equation available in the Scenario.
message_ix.Reporter.from_scenario extends this to add additional keys for derived quantities specific to the MESSAGEix model framework.
These include:

Tip

Use full_key() [https://genno.readthedocs.io/en/latest/api.html#genno.Computer.full_key] to retrieve the full-dimensionality Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] for any of these quantities.

	out = output × ACT; that is, the product of output (output efficiency) and ACT (activity)

	out_hist = output × ref_activity (historical reference activity)

	in = input × ACT

	in_hist = input × ref_activity

	emi = emission_factor × ACT

	emi_hist = emission_factor × ref_activity

	inv = inv_cost × CAP_NEW

	inv_hist = inv_cost × ref_new_capacity

	fom = fix_cost × CAP; the name refers to “Fixed Operation and Maintenance costs”

	fom_hist = fix_cost × ref_capacity

	vom = var_cost × ACT; “Variable Operation and Maintenance costs”

	vom_hist = var_cost × ref_activity

	tom = fom + vom; “Total Operation and Maintenance costs”

	land_out = land_output × LAND

	land_use_qty = land_use × LAND

	land_emi = land_emission × LAND

	addon conversion, the model parameter addon_conversion (note space versus underscore), except broadcast across individual add-on technologies (ta) rather than add-on types (type_addon).

	addon up, which is addon_up similarly broadcast.

	addon ACT = addon conversion × ACT

	addon in = input × addon ACT

	addon out = output × addon ACT

	addon potential = addon up × addon ACT, the maximum potential activity by add-on technology.

	price emission, the model variable PRICE_EMISSION broadcast across emission species (e) and technologies (t) rather than types (type_emission, type_tec).

Other added keys include:

	message_ix adds the standard short symbols for MESSAGEix dimensions (sets) based on models.DIMS.
Each of these is also available in a Reporter: for example rep.get("n") returns a list with the elements of the MESSAGEix set named “node”;
rep.get("t") returns the elements of the set “technology”, and so on.
These keys can be used as input to other computations.

	y0 = the firstmodelyear or \(y_0\) (int [https://docs.python.org/3/library/functions.html#int]).

	y::model = only the periods in the year set (y) that are equal to or greater than y0.

	Computations to convert internal Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity] data format to the IAMC data format, specifically as pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/stable/api/iamdataframe.html#pyam.IamDataFrame] objects.
These include:

	<name>::pyam for most of the above derived quantities.

	CAP::pyam (from CAP)

	CAP_NEW::pyam (from CAP_NEW)

	map_<name> as “one-hot” or indicator quantities for the respective MESSAGEix mapping sets cat_<name>.

	Standard reports message::system, message::costs, and message::emissions per TASKS1.

	The report message::default, collecting all of the above reports.

These automatic contents are prepared using:

	TASKS0

	Common reporting tasks.

	PYAM_CONVERT

	Quantities to automatically convert to IAMC format using as_pyam() [https://genno.readthedocs.io/en/latest/compat-pyam.html#genno.compat.pyam.operator.as_pyam].

	TASKS1

	Automatic reports that concat() [https://genno.readthedocs.io/en/latest/api.html#genno.operator.concat] quantities converted to IAMC format.

	
class message_ix.report.Reporter(*args, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/__init__.py#L185-L242]

	Bases: Reporter [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#ixmp.report.Reporter]

MESSAGEix Reporter.

	add(data, *args, **kwargs)

	General-purpose method to add computations.

	add_queue(queue[, max_tries, fail])

	Add tasks from a list or queue.

	add_single(key, *computation[, strict, index])

	Add a single computation at key.

	apply(generator, *keys, **kwargs)

	Add computations by applying generator to keys.

	check_keys(*keys[, predicate, action])

	Check that keys are in the Computer.

	configure([path, fail, config])

	Configure the Computer.

	describe([key, quiet])

	Return a string describing the computations that produce key.

	eval(expr)

	Evaluate expr to add tasks and keys.

	finalize(scenario)

	Prepare the Reporter to act on scenario.

	from_scenario(scenario, **kwargs)

	Create a Reporter by introspecting scenario.

	full_key(name_or_key)

	Return the full-dimensionality key for name_or_key.

	get([key])

	Execute and return the result of the computation key.

	infer_keys(key_or_keys[, dims])

	Infer complete key_or_keys.

	keys()

	Return the keys of graph [https://genno.readthedocs.io/en/latest/api.html#genno.Computer.graph].

	set_filters(**filters)

	Apply filters ex ante (before computations occur).

	visualize(filename[, key, optimize_graph])

	Generate an image describing the Computer structure.

	write(key, path, **kwargs)

	Compute key and write the result directly to path.

	add_file(*args, **kwargs)

	Deprecated.

	add_product(*args, **kwargs)

	Deprecated.

	aggregate(qty, tag, dims_or_groups[, ...])

	Deprecated.

	convert_pyam(*args, **kwargs)

	Deprecated.

	disaggregate(qty, new_dim[, method, args])

	Deprecated.

	
add(data, *args, **kwargs) → Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str], ...][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L251-L331]

	General-purpose method to add computations.

add() can be called in several ways; its behaviour depends on data; see
below. It chains to methods such as add_single(), add_queue(),
and/or apply(); each can also be called directly.

	Returns:

	Some or all of the keys added to the Computer.

	Return type:

	KeyLike or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of KeyLike

See also

add_single, add_queue, apply, iter_keys, single_key

	
add_aggregate(qty: Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str], tag: str [https://docs.python.org/3/library/stdtypes.html#str], dims_or_groups: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping] | str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]], weights: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] | None [https://docs.python.org/3/library/constants.html#None] = None, keep: bool [https://docs.python.org/3/library/functions.html#bool] = True, sums: bool [https://docs.python.org/3/library/functions.html#bool] = False, fail: str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L875-L961]

	Deprecated.

Add a computation that aggregates qty.

Deprecated since version 1.18.0: Instead, for a mapping/dict [https://docs.python.org/3/library/stdtypes.html#dict] dims_or_groups, use:

c.add(qty, "aggregate", groups=dims_or_groups, keep=keep, ...)

Or, for str [https://docs.python.org/3/library/stdtypes.html#str] or sequence of str [https://docs.python.org/3/library/stdtypes.html#str] dims_or_groups, use:

c.add(None, "sum", qty, dimensions=dims_or_groups, ...)

	Parameters:

	
	qty (Key or str [https://docs.python.org/3/library/stdtypes.html#str]) – Key of the quantity to be aggregated.

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Additional string to add to the end the key for the aggregated
quantity.

	dims_or_groups (str [https://docs.python.org/3/library/stdtypes.html#str] or collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable] of str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Name(s) of the dimension(s) to sum over, or nested dict.

	weights (xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], optional) – Weights for weighted aggregation.

	keep (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Passed to operator.aggregate.

	sums (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Passed to add().

	fail (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int], optional) – Passed to add_queue() via add().

	Returns:

	The key of the newly-added node.

	Return type:

	Key

	
add_file(*args, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L839-L857]

	Deprecated.

Deprecated since version 1.18.0: Instead use add_load_file() via:

c.add(..., "load_file", ...)

	
add_product(*args, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L858-L874]

	Deprecated.

Deprecated since version 1.18.0: Instead use add_binop() via:

c.add(..., "mul", ...)

	
add_queue(queue: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple]], max_tries: int [https://docs.python.org/3/library/functions.html#int] = 1, fail: str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str], ...][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L341-L431]

	Add tasks from a list or queue.

	Parameters:

	
	queue (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Each item is either a N-tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of positional arguments to
add(), or a 2-tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of positional
arguments, dict [https://docs.python.org/3/library/stdtypes.html#dict] of keyword arguments).

	max_tries (int [https://docs.python.org/3/library/functions.html#int], optional) – Retry adding elements up to this many times.

	fail ("raise" or str [https://docs.python.org/3/library/stdtypes.html#str] or logging [https://docs.python.org/3/library/logging.html#module-logging] level, optional) – Action to take when a computation from queue cannot be added after
max_tries: “raise” an exception, or log messages on the indicated level
and continue.

	
add_single(key: Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str], *computation, strict=False, index=False) → Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L433-L484]

	Add a single computation at key.

	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str] or Key or hashable) – A string, Key, or other value identifying the output of computation.

	computation (object [https://docs.python.org/3/library/functions.html#object]) – Any computation. See graph.

	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, key must not already exist in the Computer, and any keys
referred to by computation must exist.

	index (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, key is added to the index as a full-resolution key, so it can be
later retrieved with full_key().

	Raises:

	
	KeyExistsError [https://genno.readthedocs.io/en/latest/api.html#genno.KeyExistsError] – If strict is True [https://docs.python.org/3/library/constants.html#True] and either (a) key already exists; or (b)
 sums is True [https://docs.python.org/3/library/constants.html#True] and the key for one of the partial sums of key
 already exists.

	MissingKeyError [https://genno.readthedocs.io/en/latest/api.html#genno.MissingKeyError] – If strict is True [https://docs.python.org/3/library/constants.html#True] and any key referred to by computation does
 not exist.

	
add_tasks(fail_action: int [https://docs.python.org/3/library/functions.html#int] | str [https://docs.python.org/3/library/stdtypes.html#str] = 'raise') → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/__init__.py#L228-L242]

	Add the pre-defined MESSAGEix reporting tasks to the Reporter.

	Parameters:

	fail_action ("raise" or int [https://docs.python.org/3/library/functions.html#int]) – logging [https://docs.python.org/3/library/logging.html#module-logging] level or level name, passed to the fail argument of
Reporter.add_queue().

	
aggregate(qty: Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str], tag: str [https://docs.python.org/3/library/stdtypes.html#str], dims_or_groups: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping] | str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]], weights: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] | None [https://docs.python.org/3/library/constants.html#None] = None, keep: bool [https://docs.python.org/3/library/functions.html#bool] = True, sums: bool [https://docs.python.org/3/library/functions.html#bool] = False, fail: str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L875-L961]

	Deprecated.

Add a computation that aggregates qty.

Deprecated since version 1.18.0: Instead, for a mapping/dict [https://docs.python.org/3/library/stdtypes.html#dict] dims_or_groups, use:

c.add(qty, "aggregate", groups=dims_or_groups, keep=keep, ...)

Or, for str [https://docs.python.org/3/library/stdtypes.html#str] or sequence of str [https://docs.python.org/3/library/stdtypes.html#str] dims_or_groups, use:

c.add(None, "sum", qty, dimensions=dims_or_groups, ...)

	Parameters:

	
	qty (Key or str [https://docs.python.org/3/library/stdtypes.html#str]) – Key of the quantity to be aggregated.

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Additional string to add to the end the key for the aggregated
quantity.

	dims_or_groups (str [https://docs.python.org/3/library/stdtypes.html#str] or collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable] of str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Name(s) of the dimension(s) to sum over, or nested dict.

	weights (xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], optional) – Weights for weighted aggregation.

	keep (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Passed to operator.aggregate.

	sums (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Passed to add().

	fail (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int], optional) – Passed to add_queue() via add().

	Returns:

	The key of the newly-added node.

	Return type:

	Key

	
apply(generator: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], *keys, **kwargs) → Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str], ...][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L506-L564]

	Add computations by applying generator to keys.

	Parameters:

	
	generator (callable [https://docs.python.org/3/reference/datamodel.html#id13]) – Function to apply to keys. This function may take a first positional
argument annotated with Computer or a subtype; if so, then it is
provided with a reference to self.

The function may:

	yield or return an iterable of (key, computation). These are
used to directly update the graph, and then apply() returns
the added keys.

	If it is provided with a reference to the Computer, call add() or
any other method to update the graph. In this case, it should
return a Key or sequence of keys, indicating what was
added; these are in turn returned by apply().

	keys (Hashable) – The starting key(s). These are provided as positional arguments to
generator.

	kwargs – Keyword arguments to generator.

	
cache(func)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L332-L340]

	Decorate func so that its return value is cached.

See also

cache

	
check_keys(*keys: str [https://docs.python.org/3/library/stdtypes.html#str] | Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key], predicate=None, action='raise') → List [https://docs.python.org/3/library/typing.html#typing.List][Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str]][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L679-L741]

	Check that keys are in the Computer.

	Parameters:

	
	keys (KeyLike) – Some Keys or strings.

	predicate (callable [https://docs.python.org/3/reference/datamodel.html#id13], optional) – Function to run on each of keys; see below.

	action ("raise" or str [https://docs.python.org/3/library/stdtypes.html#str]) – Action to take on missing keys.

	Returns:

	One item for each item k in keys:

	k itself, unchanged, if predicate is given and predicate(k)
returns True [https://docs.python.org/3/library/constants.html#True].

	Graph.unsorted_key(), that is, k but with its dimensions in a
specific order that already appears in graph.

	Graph.full_key(), that is, an existing key with the name k
with its full dimensionality.

	None [https://docs.python.org/3/library/constants.html#None] otherwise.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of KeyLike

	Raises:

	MissingKeyError [https://genno.readthedocs.io/en/latest/api.html#genno.MissingKeyError] – If action is “raise” and 1 or more of keys do not appear (either in
 different dimension order, or full dimensionality) in the graph.

	
configure(path: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, fail: str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] = 'raise', config: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None, **config_kw)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L98-L146]

	Configure the Computer.

Accepts a path to a configuration file and/or keyword arguments.
Configuration keys loaded from file are superseded by keyword arguments.
Messages are logged at level logging.INFO [https://docs.python.org/3/library/logging.html#logging.INFO] if config contains
unhandled sections.

See config for a list of all configuration sections and keys, and details
of the configuration file format.

	Parameters:

	
	path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], optional) – Path to a configuration file in JSON or YAML format.

	fail ("raise" or str [https://docs.python.org/3/library/stdtypes.html#str] or logging [https://docs.python.org/3/library/logging.html#module-logging] level, optional) – Passed to add_queue(). If not “raise”, then log messages are
generated for config handlers that fail. The Computer may be only partially
configured.

	config – Configuration keys/sections and values, as a mapping. Use this if any of
the keys/sections are not valid Python names, for instance if they contain
“-” or “ “.

	**config_kw – Configuration keys/sections and values, as keyword arguments.

	
convert_pyam(*args, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L964-L986]

	Deprecated.

Deprecated since version 1.18.0: Instead use add_as_pyam() via:

c.require_compat("pyam")
c.add(..., "as_pyam", ...)

	
default_key: 'genno.core.key.KeyLike' | None [https://docs.python.org/3/library/constants.html#None] = None[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/__init__.py#L185-L242]

	The default key to get() with no argument.

	
describe(key=None, quiet=True)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L776-L801]

	Return a string describing the computations that produce key.

If key is not provided, all keys in the Computer are described.

Unless quiet, the string is also printed to the console.

	Returns:

	Description of computations.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
disaggregate(qty, new_dim, method='shares', args=[])[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L987-L1026]

	Deprecated.

Deprecated since version 1.18.0: Instead, for method = “disaggregate_shares”, use:

c = Computer()
c.add(qty.append(new_dim), "mul", qty, ..., strict=True)

Or for a callable() [https://docs.python.org/3/library/functions.html#callable] method, use:

c.add(qty.append(new_dim), method, qty, ..., strict=True)

	
eval(expr: str [https://docs.python.org/3/library/stdtypes.html#str]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key], ...][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L565-L610]

	Evaluate expr to add tasks and keys.

Parse a statement or block of statements using ast [https://docs.python.org/3/library/ast.html#module-ast] from the Python
standard library. expr may include:

	Constants.

	References to existing keys in the Computer by their name; these are expanded
using full_key().

	Multiple statements on separate lines or separated by “;”.

	Python arithmetic operators including +, -, *, /, **;
these are mapped to the corresponding operator.

	Function calls, also mapped to the corresponding operator via
get_operator(). These may include simple positional (constants or key
references) or keyword (constants only) arguments.

	Parameters:

	expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Expression to be evaluated.

	Returns:

	One key for the left-hand side of each expression.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of Key

	Raises:

	
	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – For complex expressions not supported; if any of the statements is anything
 other than a simple assignment.

	NameError [https://docs.python.org/3/library/exceptions.html#NameError] – If a function call references a non-existent computation.

	
finalize(scenario: Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario]) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/report/reporter.py#L97-L105]

	Prepare the Reporter to act on scenario.

The TimeSeries (thus also Scenario or
message_ix.Scenario) object scenario is stored with the key
'scenario'. All subsequent processing will act on data from this Scenario.

	
classmethod from_scenario(scenario, **kwargs) → Reporter[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/__init__.py#L195-L227]

	Create a Reporter by introspecting scenario.

Warnings are logged if scenario does not have a solution. In this case, any
keys/computations based on model output (ixmp variables and equations) may
return an empty Quantity, fail, or behave unpredictably. Keys/computations
based only on model input (ixmp sets and parameters) should function normally.

	Returns:

	A reporter for scenario.

	Return type:

	Reporter

	
full_key(name_or_key: Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str]) → Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L659-L678]

	Return the full-dimensionality key for name_or_key.

An quantity ‘foo’ with dimensions (a, c, n, q, x) is available in the Computer
as 'foo:a-c-n-q-x'. This Key can be retrieved with:

c.full_key("foo")
c.full_key("foo:c")
etc.

	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – if name_or_key is not in the graph.

	
get(key=None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L611-L652]

	Execute and return the result of the computation key.

Only key and its dependencies are computed.

	Parameters:

	key (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If not provided, default_key is used.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If key and default_key are both None [https://docs.python.org/3/library/constants.html#None].

	
get_comp(name) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable] | None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L149-L168]

	Return a function, Operator, or callable for use in a task.

get_operator() checks each of the modules for a callable with the
given name. Modules at the end of the list take precedence over those earlier
in the list.

	Returns:

	
	callable [https://docs.python.org/3/reference/datamodel.html#id13]

	None [https://docs.python.org/3/library/constants.html#None] – If there is no callable with the given name in any of modules.

	
get_operator(name) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable] | None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L149-L168]

	Return a function, Operator, or callable for use in a task.

get_operator() checks each of the modules for a callable with the
given name. Modules at the end of the list take precedence over those earlier
in the list.

	Returns:

	
	callable [https://docs.python.org/3/reference/datamodel.html#id13]

	None [https://docs.python.org/3/library/constants.html#None] – If there is no callable with the given name in any of modules.

	
graph: genno.core.graph.Graph [https://genno.readthedocs.io/en/latest/api.html#genno.core.graph.Graph] = {'config': {}}[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/__init__.py#L185-L242]

	A dask-format graph (see 1 [https://docs.dask.org/en/stable/graphs.html], 2 [https://docs.dask.org/en/stable/spec.html]).

	
infer_keys(key_or_keys: Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str] | Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | str [https://docs.python.org/3/library/stdtypes.html#str]], dims: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]] = [])[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L742-L775]

	Infer complete key_or_keys.

Each return value is one of:

	a Key with either

	dimensions dims, if any are given, otherwise

	its full dimensionality (cf. full_key())

	str [https://docs.python.org/3/library/stdtypes.html#str], the same as input, if the key is not defined in the Computer.

	Parameters:

	
	key_or_keys (KeyLike or list [https://docs.python.org/3/library/stdtypes.html#list] of KeyLike) –

	dims (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Drop all but these dimensions from the returned key(s).

	Returns:

	
	KeyLike – If key_or_keys is a single KeyLike.

	list [https://docs.python.org/3/library/stdtypes.html#list] of KeyLike – If key_or_keys is an iterable of KeyLike.

	
keys()[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L655-L658]

	Return the keys of graph [https://genno.readthedocs.io/en/latest/api.html#genno.Computer.graph].

	
modules: MutableSequence[types.ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType]] = [][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/__init__.py#L185-L242]

	List of modules containing operators.

By default, this includes the genno [https://genno.readthedocs.io/en/latest/api.html#module-genno] built-in operators in
genno.operator [https://genno.readthedocs.io/en/latest/api.html#module-genno.operator]. require_compat() appends additional modules,
for instance genno.compat.plotnine [https://genno.readthedocs.io/en/latest/compat-plotnine.html#module-genno.compat.plotnine], to this list. User code may also add
modules to this list directly.

	
require_compat(pkg: str [https://docs.python.org/3/library/stdtypes.html#str] | module)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L190-L248]

	Register a module for get_operator().

The specified module is appended to modules.

	Parameters:

	pkg (str [https://docs.python.org/3/library/stdtypes.html#str] or module) – One of:

	the name of a package (for instance “plotnine”), corresponding to a
submodule of genno.compat (genno.compat.plotnine [https://genno.readthedocs.io/en/latest/compat-plotnine.html#module-genno.compat.plotnine]).
genno.compat.{pkg}.operator is added.

	the name of any importable module, for instance “foo.bar”.

	a module object that has already been imported.

	Raises:

	ModuleNotFoundError [https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError] – If the required packages are missing.

Examples

Operators packaged with genno for compatibility:

>>> c = Computer()
>>> c.require_compat("pyam")

Operators in another module, using the module name:

>>> c.require_compat("ixmp.reporting.computations")

or using imported module object directly:

>>> import ixmp.reporting.computations as mod
>>> c.require_compat(mod)

	
set_filters(**filters) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/report/reporter.py#L106-L112]

	Apply filters ex ante (before computations occur).

See the description of filters() under Configuration [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#reporting-config].

	
property unit_registry[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L832-L836]

	The pint.UnitRegistry [https://pint.readthedocs.io/en/stable/api/base.html#pint.UnitRegistry] used by the Computer.

	
visualize(filename, key=None, optimize_graph=False, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L802-L825]

	Generate an image describing the Computer structure.

This is similar to dask.visualize() [https://docs.dask.org/en/stable/api.html#dask.visualize]; see
compat.graphviz.visualize(). Requires
graphviz [https://pypi.org/project/graphviz/].

	
write(key, path, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/computer.py#L826-L831]

	Compute key and write the result directly to path.

	
message_ix.report.TASKS0: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple], ...] = (('map_addon', 'map_as_qty', 'cat_addon', 't'), ('map_emission', 'map_as_qty', 'cat_emission', 'e'), ('map_tec', 'map_as_qty', 'cat_tec', 't'), ('map_year', 'map_as_qty', 'cat_year', 'y'), ('out', 'mul', 'output', 'ACT'), ('in', 'mul', 'input', 'ACT'), ('rel', 'mul', 'relation_activity', 'ACT'), ('emi', 'mul', 'emission_factor', 'ACT'), ('inv', 'mul', 'inv_cost', 'CAP_NEW'), ('fom', 'mul', 'fix_cost', 'CAP'), ('vom', 'mul', 'var_cost', 'ACT'), ('land_out', 'mul', 'land_output', 'LAND'), ('land_use_qty', 'mul', 'land_use', 'LAND'), ('land_emi', 'mul', 'land_emission', 'LAND'), ('y::model', 'model_periods', 'y', 'cat_year'), ('y0', operator.itemgetter(0), 'y::model'), ('tom', 'add', 'fom:nl-t-yv-ya', 'vom:nl-t-yv-ya'), (('addon conversion:nl-t-yv-ya-m-h-ta', <function broadcast_map>, 'addon_conversion:n-t-yv-ya-m-h-type_addon', 'map_addon'), {'rename': {'n': 'nl'}}), ('addon ACT', 'mul', 'addon conversion', 'ACT'), ('addon in', 'mul', 'input', 'addon ACT'), ('addon out', 'mul', 'output', 'addon ACT'), (('addon up:nl-t-ya-m-h-ta', <function broadcast_map>, 'addon_up:n-t-ya-m-h-type_addon', 'map_addon'), {'rename': {'n': 'nl'}}), ('addon potential', 'mul', 'addon up', 'addon ACT'), ('price emission:n-e-t-y', <function broadcast_map>, (<function broadcast_map>, 'PRICE_EMISSION:n-type_emission-type_tec-y', 'map_emission'), 'map_tec'))[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/__init__.py#L0-L241]

	Common reporting tasks. These include:

	MESSAGE mapping sets, converted to reporting quantities via
map_as_qty() [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#ixmp.report.operator.map_as_qty].

For instance, the mapping set cat_addon is available at the reporting key
map_addon, which produces a genno.Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity] with the two dimensions
type_addon and ta (short form of technology_addon). This Quantity
contains the value 1 at every valid (type_addon, ta) location, and 0 elsewhere.

	Simple products of 2 or mode quantities.

	Other derived quantities.

	
message_ix.report.PYAM_CONVERT = [('out:nl-t-ya-m-nd-c-l', {'kind': 'ene', 'var': 'out'}), ('in:nl-t-ya-m-no-c-l', {'kind': 'ene', 'var': 'in'}), ('CAP:nl-t-ya', {'var': 'capacity'}), ('CAP_NEW:nl-t-yv', {'var': 'new capacity'}), ('inv:nl-t-yv', {'var': 'inv cost'}), ('fom:nl-t-ya', {'var': 'fom cost'}), ('vom:nl-t-ya', {'var': 'vom cost'}), ('tom:nl-t-ya', {'var': 'total om cost'}), ('emi:nl-t-ya-m-e', {'kind': 'emi', 'var': 'emis'})][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/__init__.py#L0-L241]

	Quantities to automatically convert to IAMC format using
as_pyam() [https://genno.readthedocs.io/en/latest/compat-pyam.html#genno.compat.pyam.operator.as_pyam].

	
message_ix.report.TASKS1 = (('message::system', 'concat', 'out::pyam', 'in::pyam', 'CAP::pyam', 'CAP_NEW::pyam'), ('message::costs', 'concat', 'inv::pyam', 'fom::pyam', 'vom::pyam', 'tom::pyam'), ('message::emissions', 'concat', 'emi::pyam'), ('message::default', 'concat', 'message::system', 'message::costs', 'message::emissions'))[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/__init__.py#L0-L241]

	Automatic reports that concat() [https://genno.readthedocs.io/en/latest/api.html#genno.operator.concat] quantities converted to IAMC
format.

	
exception message_ix.report.ComputationError(exc)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/exceptions.py#L8-L57]

	Wrapper to print intelligible exception information for Computer.get().

In order to aid in debugging, this helper:

	Omits the parts of the stack trace that are internal to dask, and

	Gives the key in the Computer.graph and the computation/task that caused
the exception.

	
class message_ix.report.Key(name_or_value: str [https://docs.python.org/3/library/stdtypes.html#str] | Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity], dims: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]] = [], tag: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, _fast: bool [https://docs.python.org/3/library/functions.html#bool] = False)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L48-L314]

	A hashable key for a quantity that includes its dimensionality.

	
add_tag(tag) → Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L298-L303]

	Return a new Key with tag appended.

	
append(*dims: str [https://docs.python.org/3/library/stdtypes.html#str]) → Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L294-L297]

	Return a new Key with additional dimensions dims.

	
classmethod bare_name(value) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L98-L105]

	If value is a bare name (no dims or tags), return it; else None [https://docs.python.org/3/library/constants.html#None].

	
property dims: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], ...][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L262-L266]

	Dimensions of the quantity, tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str].

	
drop(*dims: str [https://docs.python.org/3/library/stdtypes.html#str] | bool [https://docs.python.org/3/library/functions.html#bool]) → Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L281-L289]

	Return a new Key with dims dropped.

	
drop_all() → Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L290-L293]

	Return a new Key with all dimensions dropped / zero dimensions.

	
classmethod from_str_or_key(value: str [https://docs.python.org/3/library/stdtypes.html#str] | Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key] | Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity], drop: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]] | bool [https://docs.python.org/3/library/functions.html#bool] = [], append: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]] = [], tag: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L106-L164]

	Return a new Key from value.

Changed in version 1.18.0: Calling from_str_or_key() with a single argument is no longer
necessary; simply give the same value as an argument to Key.

The class method is retained for convenience when calling with multiple
arguments. However, the following are equivalent and may be more readable:

k1 = Key("foo:a-b-c:t1", drop="b", append="d", tag="t2")
k2 = Key("foo:a-b-c:t1").drop("b").append("d)"

	Parameters:

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str] or Key) – Value to use to generate a new Key.

	drop (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str] or True [https://docs.python.org/3/library/constants.html#True], optional) – Existing dimensions of value to drop. See drop().

	append (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – New dimensions to append to the returned Key. See append().

	tag (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Tag for returned Key. If value has a tag, the two are joined
using a ‘+’ character. See add_tag().

	Return type:

	Key

	
iter_sums() → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key], Callable [https://docs.python.org/3/library/typing.html#typing.Callable], Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key]], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L304-L314]

	Generate (key, task) for all possible partial sums of the Key.

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L257-L261]

	Name of the quantity, str [https://docs.python.org/3/library/stdtypes.html#str].

	
classmethod product(new_name: str [https://docs.python.org/3/library/stdtypes.html#str], *keys, tag: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L165-L186]

	Return a new Key that has the union of dimensions on keys.

Dimensions are ordered by their first appearance:

	First, the dimensions of the first of the keys.

	Next, any additional dimensions in the second of the keys that
were not already added in step 1.

	etc.

	Parameters:

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name for the new Key. The names of keys are discarded.

	
rename(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L277-L280]

	Return a Key with a replaced name.

	
property sorted: Key [https://genno.readthedocs.io/en/latest/api.html#genno.Key][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L272-L276]

	A version of the Key with its dims sorted() [https://docs.python.org/3/library/functions.html#sorted].

	
property tag: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/key.py#L267-L271]

	Quantity tag, str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None].

	
exception message_ix.report.KeyExistsError[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/exceptions.py#L59-L64]

	Raised by Computer.add() when the target key exists.

	
exception message_ix.report.MissingKeyError[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/exceptions.py#L66-L71]

	Raised by Computer.add() when a required input key is missing.

	
class message_ix.report.Quantity(*args, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/quantity.py#L16-L136]

	A sparse data structure that behaves like xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray].

Depending on the value of CLASS, Quantity is either AttrSeries or
SparseDataArray.

	
classmethod from_series(series, sparse=True)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/quantity.py#L29-L35]

	Convert series to the Quantity class given by CLASS.

	
property name: Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable] | None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/quantity.py#L36-L40]

	The name of this quantity.

	
property units[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/core/quantity.py#L45-L66]

	Retrieve or set the units of the Quantity.

Examples

Create a quantity without units:

>>> qty = Quantity(...)

Set using a string; automatically converted to pint.Unit:

>>> qty.units = "kg"
>>> qty.units
<Unit('kilogram')>

	
message_ix.report.configure(path: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, **config)[source] [https://github.com/iiasa/message_ix/blob/HEAD/genno/config.py#L36-L55]

	Configure genno [https://genno.readthedocs.io/en/latest/api.html#module-genno] globally.

Modifies global variables that affect the behaviour of all Computers and
operators. Configuration keys loaded from file are superseded by keyword arguments.
Messages are logged at level logging.INFO [https://docs.python.org/3/library/logging.html#logging.INFO] if config contains unhandled
sections.

	Parameters:

	
	path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], optional) – Path to a configuration file in JSON or YAML format.

	**config – Configuration keys/sections and values.

Operators

message_ix.report provides a small number of operators.
Two of these (plot_cumulative() and stacked_bar()) are currently only used in the tutorials to produce simple plots; for more flexible plotting, genno.compat.plotnine [https://genno.readthedocs.io/en/latest/compat-plotnine.html#module-genno.compat.plotnine] is recommended instead.

	as_message_df(qty, name, dims, common[, wrap])

	Convert qty to an add_par()-ready data frame using make_df().

	model_periods(y, cat_year)

	Return the elements of y beyond the firstmodelyear of cat_year.

	plot_cumulative(x, y, labels)

	Plot a supply curve.

	stacked_bar(qty[, dims, units, title, cf, ...])

	Plot qty as a stacked bar chart.

Other operators are provided by ixmp.report [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#module-ixmp.report]:

	data_for_quantity [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#ixmp.report.operator.data_for_quantity](ix_type, name, column, ...)

	Retrieve data from scenario.

	from_url [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#ixmp.report.operator.from_url](url[, cls])

	Return a ixmp.TimeSeries [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.TimeSeries] or subclass instance, given its url.

	get_ts [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#ixmp.report.operator.get_ts](ts[, filters, iamc, subannual])

	Retrieve timeseries data from ts.

	map_as_qty [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#ixmp.report.operator.map_as_qty](set_df, full_set)

	Convert set_df to a Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity].

	remove_ts [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#ixmp.report.operator.remove_ts](ts[, data, after])

	Remove all time series data from ts.

	store_ts [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#ixmp.report.operator.store_ts](scenario, *data[, strict])

	Store time series data on scenario.

	update_scenario [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#ixmp.report.operator.update_scenario](scenario, *quantities[, params])

	Update scenario with computed data from reporting quantities.

…and by genno.operator [https://genno.readthedocs.io/en/latest/api.html#module-genno.operator] and its compatibility modules.
See the package documentation for details.

	Plot [https://genno.readthedocs.io/en/latest/compat-plotnine.html#genno.compat.plotnine.Plot]()

	Class for plotting using plotnine [https://plotnine.readthedocs.io/en/stable/index.html].

	add [https://genno.readthedocs.io/en/latest/api.html#genno.operator.add]

	Sum across multiple quantities.

	aggregate [https://genno.readthedocs.io/en/latest/api.html#genno.operator.aggregate](quantity, groups, keep)

	Aggregate quantity by groups.

	apply_units [https://genno.readthedocs.io/en/latest/api.html#genno.operator.apply_units](qty, units)

	Apply units to qty.

	as_pyam [https://genno.readthedocs.io/en/latest/compat-pyam.html#genno.compat.pyam.operator.as_pyam]

	Return a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/stable/api/iamdataframe.html#pyam.IamDataFrame] containing the data from quantity.

	broadcast_map [https://genno.readthedocs.io/en/latest/api.html#genno.operator.broadcast_map](quantity, map[, rename, strict])

	Broadcast quantity using a map.

	combine [https://genno.readthedocs.io/en/latest/api.html#genno.operator.combine](*quantities[, select, weights])

	Sum distinct quantities by weights.

	concat [https://genno.readthedocs.io/en/latest/api.html#genno.operator.concat]()

	Concatenate Quantity objs.

	div [https://genno.readthedocs.io/en/latest/api.html#genno.operator.div]

	Compute the ratio numerator / denominator.

	drop_vars [https://genno.readthedocs.io/en/latest/api.html#genno.operator.drop_vars](qty, names, *[, errors])

	Return a Quantity with dropped variables (coordinates).

	group_sum [https://genno.readthedocs.io/en/latest/api.html#genno.operator.group_sum](qty, group, sum)

	Group by dimension group, then sum across dimension sum.

	index_to [https://genno.readthedocs.io/en/latest/api.html#genno.operator.index_to](qty, dim_or_selector[, label])

	Compute an index of qty against certain of its values.

	interpolate [https://genno.readthedocs.io/en/latest/api.html#genno.operator.interpolate](qty[, coords, method, ...])

	Interpolate qty.

	load_file [https://genno.readthedocs.io/en/latest/api.html#genno.operator.load_file]

	Read the file at path and return its contents as a Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity].

	mul [https://genno.readthedocs.io/en/latest/api.html#genno.operator.mul]

	Compute the product of any number of quantities.

	pow [https://genno.readthedocs.io/en/latest/api.html#genno.operator.pow](a, b)

	Compute a raised to the power of b.

	relabel [https://genno.readthedocs.io/en/latest/api.html#genno.operator.relabel](qty[, labels])

	Replace specific labels along dimensions of qty.

	rename_dims [https://genno.readthedocs.io/en/latest/api.html#genno.operator.rename_dims](qty[, new_name_or_name_dict])

	Rename the dimensions of qty.

	round [https://genno.readthedocs.io/en/latest/api.html#genno.operator.round](qty, *args, **kwargs)

	Like xarray.DataArray.round() [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.round.html#xarray.DataArray.round].

	select [https://genno.readthedocs.io/en/latest/api.html#genno.operator.select](qty, indexers, *[, inverse, drop])

	Select from qty based on indexers.

	sub [https://genno.readthedocs.io/en/latest/api.html#genno.operator.sub]

	Subtract b from a.

	sum [https://genno.readthedocs.io/en/latest/api.html#genno.operator.sum]

	Sum quantity over dimensions, with optional weights.

	write_report [https://genno.readthedocs.io/en/latest/api.html#genno.operator.write_report](-> None
 -> None)

	Write a quantity to a file.

	disaggregate_shares [https://genno.readthedocs.io/en/latest/api.html#genno.operator.disaggregate_shares](quantity, shares)

	Deprecated: Disaggregate quantity by shares.

	product [https://genno.readthedocs.io/en/latest/api.html#genno.operator.product]

	Alias of mul() [https://genno.readthedocs.io/en/latest/api.html#genno.operator.mul], for backwards compatibility.

	ratio [https://genno.readthedocs.io/en/latest/api.html#genno.operator.ratio]

	Alias of div() [https://genno.readthedocs.io/en/latest/api.html#genno.operator.div], for backwards compatibility.

	
message_ix.report.operator.as_message_df(qty: Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity], name: str [https://docs.python.org/3/library/stdtypes.html#str], dims: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping], common: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping], wrap: bool [https://docs.python.org/3/library/functions.html#bool] = True) → DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] | dict [https://docs.python.org/3/library/stdtypes.html#dict][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/operator.py#L16-L60]

	Convert qty to an add_par()-ready data frame using make_df().

The resulting data frame has:

	A “value” column populated with the values of qty.

	A “unit” column with the string representation of the units of qty.

	Other dimensions/key columns filled with labels of qty according to dims.

	Other dimensions/key columns filled with uniform values from common.

	Parameters:

	
	qty (genno.Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the MESSAGEix parameter to prepare.

	dims (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]) – Each key corresponds to a dimension of the target parameter name, for instance
“node_loc”; the label corresponds to a dimension of qty, for instance “nl”.

	common (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]) – Each key corresponds to a dimension of the target parameter; values are used
literally, as if passed to make_df().

	wrap (bool [https://docs.python.org/3/library/functions.html#bool], optional) – See below.

	Returns:

	
	dict [https://docs.python.org/3/library/stdtypes.html#dict] – if wrap is True [https://docs.python.org/3/library/constants.html#True] (the default): length 1, mapping from name to
pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] containing the converted data.

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] – if wrap is False [https://docs.python.org/3/library/constants.html#False].

	
message_ix.report.operator.model_periods(y: List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]], cat_year: DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) → List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/operator.py#L62-L71]

	Return the elements of y beyond the firstmodelyear of cat_year.

	
message_ix.report.operator.plot_cumulative(x, y, labels)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/operator.py#L73-L134]

	Plot a supply curve.

	x and y must share the first two dimensions.

	The first dimension must contain unique values.

	One rectangle is plotted for each unique value in the second dimension.

	Parameters:

	
	x (genno.Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity]) – e.g. <resource_volume:n-g>.

	y (genno.Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity]) – e.g. <resource_cost:n-g-y>. The mean() is taken across the third
dimension.

	
message_ix.report.operator.stacked_bar(qty, dims=['nl', 't', 'ya'], units='', title='', cf=1.0, stacked=True)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/operator.py#L136-L174]

	Plot qty as a stacked bar chart.

	Parameters:

	
	qty (genno.Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity]) – Data to plot.

	dims (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Dimensions for, respectively:

	The node/region.

	Dimension to stack.

	The ordinate (x-axis).

	units (str [https://docs.python.org/3/library/stdtypes.html#str]) – Units to display on the plot.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title fragment; the plot title is “{node} {title}”.

	cf (float [https://docs.python.org/3/library/functions.html#float], optional) – Conversion factor to apply to data.

Utilities

	
message_ix.report.pyam.collapse_message_cols(df: DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], var: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, kind: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, var_cols=[]) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/report/pyam.py#L7-L42]

	genno.compat.pyam [https://genno.readthedocs.io/en/latest/compat-pyam.html#module-genno.compat.pyam] collapse=… callback for MESSAGEix quantities.

Wraps collapse() [https://genno.readthedocs.io/en/latest/compat-pyam.html#genno.compat.pyam.util.collapse] with arguments particular to
MESSAGEix.

	Parameters:

	
	var (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name for ‘variable’ column.

	kind (None [https://docs.python.org/3/library/constants.html#None] or 'ene' or 'emi', optional) – Determines which other columns are combined into the ‘region’ and ‘variable’
columns:

	’ene’: ‘variable’ is
'<var>|<level>|<commodity>|<technology>|<mode>' and ‘region’ is
'<region>|<node_dest>' (if var=’out’) or
'<region>|<node_origin>' (if ‘var=’in’).

	’emi’: ‘variable’ is '<var>|<emission>|<technology>|<mode>'.

	Otherwise: ‘variable’ is '<var>|<technology>'.

 Debugging and data validation

Debugging and data validation

Finding the cause for infeasibilities or counter-intuitive results in large-scale numerical models is not trivial.
For this reason, the MESSAGEix framework includes a number of features to simplify debugging and pre-processing data validation.

Pre-processing data validation

The data validation checks are included in the file model/MESSAGE/data_load.gms.
If the data validation fails, an error message is written to the log file.

Identification of infeasibilities

The MESSAGEix framework includes the option to “relax” the most common constraints, simultaneously adding a penalty term for the relaxation to the objective function.
Solving the relaxed version of the model can help to identify incompatible constraints or input data errors causing infeasible models.

The relaxations can be activated by blocks/types of equations by setting the respective global variables ($SETGLOBAL in GAMS) in MESSAGE_master.gms or by calling MESSAGE_run.gms passing the global variables as command-line arguments.

 Calibrate and tune MESSAGE-MACRO

Calibrate and tune MESSAGE-MACRO

“MESSAGE-MACRO” refers to an iterative algorithm that links MESSAGE and MACRO [9].
This algorithm allows to model demand elasticity: MESSAGE solution data on energy prices and total system costs are provided to MACRO, and MACRO solution data on (endogenous) demand and GDP are provided to MESSAGE.
This process continues until a convergence criterion or “equilibrium” is reached—briefly, that the MACRO demand output varies minimally between two iterations ([4], further details can be found here [https://docs.messageix.org/projects/global/en/latest/macro.html#macro]).

The linked models can be activated by calling Scenario.solve() with the argument model=’MESSAGE-MACRO’, or using the GAMS MESSAGE-MACRO_run.gms script directly (see Running a model for details about these two methods).

	Input data for calibration

	config: general configuration

	MACRO parameters

	Numerical issues

	Oscillation detection in the MESSAGE-MACRO algorithm

	Issue 1: Oscillations not detected

	Identifying oscillation

	Preventing oscillation

	Issue 2: MESSAGE solves optimally with unscaled infeasibilities

	Code documentation

To solve a MESSAGE scenario using MESSAGE-MACRO, it is first necessary to calibrate MACRO.
As described in [4], the calibration process…

is parameterized off of a baseline scenario (which assumes some autonomous rate of energy efficiency improvement, AEEI) and is conducted for all MESSAGE regions simultaneously.
Therefore, the demand responses motivated by MACRO are meant to represent the additional (compared to the baseline) energy efficiency improvements and conservation that would occur in each region as a result of higher prices for energy services.

In the calibration process, the user provides exogenous, reference energy prices (price_ref) and reference total energy system cost (cost_ref) that correspond to a reference level of demand (demand_ref) in a particular reference year—generally, the ‘historic’ period that directly precedes the first period in the MESSAGE model horizon for optimization (firstmodelyear).
This reference year is a period for which commodity prices and energy system cost are known for a given demand of those commodities.

Using these reference values plus energy prices (PRICE_COMMODITY) and total system cost (COST_NODAL_NET) from the solution of MESSAGE for a given demand time series (demand), the calibration process changes two parameters, namely, the autonomous rate of energy efficiency improvement (aeei) and growth in GDP (grow), such that the output of MACRO (GDP and DEMAND) converges to an initially specified time series trajectory of GDP (gdp_calibrate) and demand (demand), respectively.
The scenario used for calibration is usually a baseline scenario, meaning that this scenario does not include any constraints that implement policy targets that affect commodity prices (for instance, long-term climate policy targets).
Without the calibration, the output of MACRO (GDP and DEMAND) can be different from the initial exogenous assumptions for GDP and demand (gdp_calibrate and demand) in MESSAGE for a given scenario.

The calibration process is invoked using Scenario.add_macro() on a (baseline) scenario and runs for the entire optimization-time horizon, i.e., for all model periods including and after the firstmodelyear.
As mentioned, the required price_ref, cost_ref, and demand_ref inputs refer to a period prior to the model horizon.
This is detailed in the next section.

The calibration itself is carried out by the message_ix/model/MACRO/macro_calibration.gms.
In this iterative process, max_it is used to specify the number of iterations carried out between MESSAGE and MACRO as part of the calibration process.
The default value is set to 100 iterations, which has proven to be sufficient for the calibration of MACRO to MESSAGE reference scenario for various models.
Adjustment of GDP growth rates (grow) is carried out during even iterations.
Adjustment of AEEI improvement rates (aeei) is carried out during odd iterations.

Note

Note, that no actual check is carried out to see if the calibration process has been successful at the end of iterations.

The information from the calibration process is logged in message_ix/model/MACRO_run.lst.
Successful calibration of MESSAGE to MACRO can be identified by looking at the reported values for the “PARAMETER growth_correction” for the last “even” iteration, which should be somewhere around 1e-14 to 1e-16 for positive adjustments or -1e-14 to -1e-16 for negative adjustments.
Likewise, the “PARAMETER aeei_correction” can be checked for the last “odd” iteration.
Once the calibration process has been completed, the scenario will be populated with additional parameters.
As part of the calibration process, a final check will automatically be carried out by solving the freshly calibrated scenario in the MESSAGE-MACRO coupled mode, ensuring that the convergence criteria between solution of MESSAGE and MACRO is met after the first iteration.

Input data for calibration

For calibration, Scenario.add_macro() requires input data that can be provided as either:

	a Python dict [https://docs.python.org/3/library/stdtypes.html#dict] that maps item names to pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] objects, or

	the path to a file in Microsoft Excel format, in which each item is stored as a separate sheet.

For an example of such input data files, see the files message_ix/tests/data/*_macro_input.xlsx included as part of the message_ix test suite; either in your local installation, or here on GitHub [https://github.com/iiasa/message_ix/tree/main/message_ix/tests/data].

This section describes the required contents of each item.

config: general configuration

This table/sheet provides structural information for MACRO calibration and the MESSAGE-MACRO linkage.
The table has five columns, each of which is a list of labels/codes for a corresponding ixmp set [https://docs.messageix.org/projects/ixmp/en/latest/data-model.html#data-model-data]:

	“node”, “year”: these columns can each have any length, depending on the number of nodes and periods to be included in the MACRO calibration process.

	“sector”, “commodity”, “level”: these 3 columns must have equal lengths.
They describe a one-to-one correspondence between items in the MACRO sector set (entries in the “sector” column) and MESSAGE commodity and level sets (paired entries in the “commodity” and “level” columns).

MACRO parameters

The remaining tables/sheets each contain data for one MACRO parameter.
The required dimensions or symbol of each item are given in the same notation used in the documentation of the MACRO core formulation.

	price_ref (\(n, s\)): prices of MACRO sector output in the reference year.
These can be constructed from the MESSAGE variable PRICE_COMMODITY, using the config mapping.
If not provided, message_ix.macro will identify the reference year and extrapolate reference values using an exponential function fitted to PRICE_COMMODITY values; see macro.extrapolate().

	cost_ref (\(n\)): total cost of the energy system in the reference year.
These can be constructed from the MESSAGE variable COST_NODAL_NET, including dividing by a factor of 1000.
If not provided, message_ix.macro will extrapolate using macro.extrapolate().

	demand_ref (\(n, s\)): demand for MACRO sector output in the reference year.

	lotol (\(n\)): tolerance factor for lower bounds on MACRO variables.

	esub (\(\epsilon_n\)): elasticity of substitution between capital-labor and energy.

	drate (\(n\)): social discount rate.

	depr (\(\mathrm{depr}_n\)): annual percent depreciation.

	kpvs (\(\alpha_n\)): capital value share parameter.

	kgdp (\(n\)): initial capital to GDP ratio in base year.

	gdp_calibrate (\(n, y\)): trajectory of GDP in optimization years calibrated to energy demand to MESSAGE.
In order to compute the growth rates in historical years, values are required for the reference year and one prior period—that is, at least two periods prior to the firstmodelyear.

	aeei (\(n, s, y\)): annual potential decrease of energy intensity in sector sector.

	MERtoPPP (\(n, y\)): conversion factor of GDP from market exchange rates to purchasing power parity.

Numerical issues

This section describes how to solve two numerical issues that can occur in large MESSAGEix models.

Oscillation detection in the MESSAGE-MACRO algorithm

The documentation for the MESSAGE_MACRO class describes the algorithm and its three parameters:

	convergence_criterion,

	max_adjustment, and

	max_iteration.

The algorithm detects ‘oscillation’, which occurs when MESSAGE and MACRO each return slightly different solutions, but these two solutions are each stable.

If the difference between these points is greater than convergence_criterion, the algorithm might jump between these two points infinitely.
Instead, the algorithm detects oscillation by comparing model solutions on each iteration to previous values recorded in the iteration log.
Specifically, the algorithm checks for three patterns across the iterations.

	Does the sign of the max_adjustment parameter change?

	Are the maximum-positive and maximum-negative adjustments equal to each other?

	Do the solutions jump between two objective functions?

If the algorithm picks up on the oscillation between iterations, then after MACRO has solved and before solving MESSAGE, a log message is printed as follows:

--- Restarting execution
--- MESSAGE-MACRO_run.gms(4986) 625 Mb
--- Reading solution for model MESSAGE_MACRO
--- MESSAGE-MACRO_run.gms(4691) 630 Mb
 +++ Indication of oscillation, increase the scaling parameter (4) +++
--- GDX File c:\repo\message_ix\message_ix\model\output\MsgIterationReport_ENGAGE_SSP2_v4_EN_NPi2020_900.gdx
 Time since GAMS start: 1 hour, 10 minutes
 +++ Starting iteration 14 of MESSAGEix-MACRO... +++
 +++ Solve the perfect-foresight version of MESSAGEix +++
--- Generating LP model MESSAGE_LP

Note

This example is from a particular model run, and the actual message may differ.

Which of the three checks listed above has been invoked is logged in the iteration report in MsgIterationReport_<model_name>_<scenario_name>.gdx under the header “oscillation check”.

The algorithm then gradually reduces max_adjustment from the user-supplied value.
This has the effect of reducing the allowable relative change in demands, until the convergence_criterion is met.

If none of the checks have been invoked over the iterations, then MESSAGEix and MACRO converged naturally.
A log message as follows is printed:

--- Reading solution for model MESSAGE_MACRO
--- Executing after solve: elapsed 7:42:24.622
--- MESSAGE-MACRO_run.gms(5176) 1116 Mb
 +++ Convergence criteria satisfied after 14 iterations +++
 +++ Natural convergence achieved +++

If in any of the iterations, any of the three oscillation checks were invoked, a log message is printed as follows:

--- Reading solution for model MESSAGE_MACRO
--- Executing after solve: elapsed 7:42:24.622
--- MESSAGE-MACRO_run.gms(5176) 1116 Mb
 +++ Convergence criteria satisfied after 14 iterations +++
 +++ Convergence achieved via oscillation check mechanism; check iteration log for further details +++

Issue 1: Oscillations not detected

Oscillation detection can fail, especially when the oscillation is very small.
When this occurs, MESSAGE-MACRO will iterate until max_iteration (default 50) and then print a message indicating that it has not converged.

For the MESSAGEix-GLOBIOM global model, this issue can be encountered with scenarios which have stringent carbon budgets (e.g. <1000 Gt CO₂ cumulative) and require more aggressive reductions of demands.

Identifying oscillation

In order to find out whether failure to converge is due to undetected oscillation, check the iteration report.
The initial iterations will show the objective function value either decreasing or increasing (depending on the model), but after a number of iterations, the objective function will flip-flop between two very similar values.

Preventing oscillation

The issue can be resolved by tuning max_adjustment and convergence_criterion from their respective default values of 0.2 (20%) and 0.01 (1%).
The general approach is to reduce max_adjustment.
Reducing this parameter to half of its default value—i.e. 0.1, or 10%—can help, but it can be reduced further, as low as 0.01 (1%).

This may require further tuning of the other parameters: first, ensure that convergence_criterion is smaller than max_adjustment, e.g. set to 0.009 (0.9%) < 0.01.
Second, due to the small change allowed to the model solution each iteration, if the initial MESSAGE solution is not close to the convergence point, numerous iterations could be required.
Therefore max_iteration may also need an increase.

These changes can be made in two ways:

	Pass the values to MESSAGE_MACRO via keyword arguments to Scenario.solve().

	Manually edit the default values in MESSAGE-MACRO_run.gms.

Issue 2: MESSAGE solves optimally with unscaled infeasibilities

By default, message_ix is configured so that the CPLEX solver runs using the lpmethod option set to 4, selecting the barrier method.
Solving models the size of MESSAGEix-GLOBIOM would otherwise take very long with the dual simplex method (lpmethod set to 2); scenarios with stringent constraints can take >10 hours on common hardware.
With lpmethod set to 4 the model can solve in under a minute.

The drawback of using the barrier method is that, after CPLEX has solved, it crosses over to a simplex optimizer for verification.
As part of this verification step, it may turn out that the CPLEX solution is “optimal with unscaled infeasibilities.”

This issue arises when some parameters in the model are not well-scaled, resulting in numerical issues within the solver.
This page [https://www.tu-chemnitz.de/mathematik/discrete/manuals/cplex/doc/userman/html/solveLPS33.html] (from an earlier, 2002 version of the CPLEX user manual) offers some advice on how to overcome the issues.
The most direct solution is to rescale the parameters in the model itself.

When this is not possible, there are some workarounds:

	Adjust CPLEX’s scaling parameter; specify scaind = 1.
This will result in more “aggressive” scaling.

	Adjust CPLEX’s barrier crossover algorithm; specify barcrossalg = 2.
By default, CPLEX will choose between either Primal crossover or Dual crossover.
Unscaled infeasibilities will result only with Primal crossover, hence forcing CPLEX to use the latter will resolve the issue.
This will result in longer solving times, but will guarantee overcoming the issue.

Note

This solution has been implemented as part of the MESSAGE-MACRO iterations process.
During the iterations, a check is performed on the solution status of MESSAGE.
When solving with unscaled infeasibilities, in GAMS, the modelstat will be 1 (Optimal) and the solvestat will be 4 (Terminated by Solver).
In this case, a secondary CPLEX configuration file is used for subsequent solving of the MESSAGE model.
The secondary CPLEX configuration file message_ixmodelcplex.op2 is a duplicate of message_ixmodelcplex.opt with the addition of the argument barcrossalg = 2.
This secondary CPLEX configuration file is generated together with the primary CPLEX configuration file in message_ixmodels.py.
Further information on the status description of GAMS can be found here [http://www.gamsworld.org/performance/status_codes.htm].
These differ from those reported by CPLEX [https://www.tu-chemnitz.de/mathematik/discrete/manuals/cplex/doc/refman/html/appendixB.html].

	Adjust CPLEX’s convergence criterion, epopt (this is distinct from the convergence_criterion of the MESSAGE_MACRO algorithm).
In message_ix, DEFAULT_CPLEX_OPTIONS sets this to 1e-6 by default.
This approach is delicate, as changing the tolerance may also change the solution by a significant amount.
This has not been tested in detail and should be handled with care.

	Switch to other methods provided by CPLEX, using e.g. lpmethod = 2.
A disadvantage of this approach is the longer runtime, as described above.

The arguments can be passed with the solve command, e.g. scenario.solve(solve_options={“barcrossalg”: “2”})
Alternatively the arguments can be specified either in models.py.

Code documentation

The functions add_model_data() and calibrate() are used by Scenario.add_macro().
Others are internal; prepare_computer() assembles the following functions into a genno.Computer [https://genno.readthedocs.io/en/latest/api.html#genno.Computer] that then executes the necessary calculations to prepare the model data.

	Structures(level, node, sector, year)

	MACRO structure information.

	aconst(bconst, demand_ref, gdp0, k0, kpvs, rho)

	Calculate production function coefficient of capital and labor.

	add_par(scenario, data, ym1, *, name)

	Add data to the scenario.

	add_structure(scenario, ...)

	Add MACRO structure information to scenario.

	bconst(demand_ref, gdp0, price_ref, rho)

	Calculate production function coefficient.

	demand(model_demand, demand_ref, ...)

	Prepare data for the demand_MESSAGE MACRO parameter.

	gdp0(gdp_calibrate, ym1)

	Select GDP reference values from "gdp_calibrate".

	growth(gdp_calibrate)

	Calculate GDP growth rates between model periods (MACRO parameter grow).

	macro_periods(demand, config)

	Periods ("years") for the MACRO model.

	mapping_macro_sector(config)

	Data for the MACRO set mapping_macro_sector.

	price(model_price, price_ref, ...)

	Prepare data for the price_MESSAGE MACRO parameter.

	rho(esub)

	Calculate "rho" based on "esub", elasticity of substitution.

	total_cost(model_cost, cost_ref, ym1)

	Combine model_cost and cost_ref (reference year) data.

	unique_set(column, df)

	A set [https://docs.python.org/3/library/stdtypes.html#set] of the unique elements in column of df.

	validate_transform(name, data, s)

	Validate df as input data for name, and transform for further calculation.

	ym1(df, macro_periods)

	Period for MACRO initialization: "year minus-one".

The following diagram visualizes the calculation flow:

[image: Diagram of the calculation flow in the calibration of MACRO.]

	
message_ix.macro.INPUT_DATA = ['aeei', 'cost_ref', 'demand_ref', 'depr', 'drate', 'esub', 'gdp_calibrate', 'kgdp', 'kpvs', 'lotol', 'MERtoPPP', 'price_ref'][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L0-L807]

	MACRO calibration parameters to be verified when reading the input data.

	
class message_ix.macro.Structures(level: Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]], node: Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]], sector: Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]], year: Set [https://docs.python.org/3/library/typing.html#typing.Set][int [https://docs.python.org/3/library/functions.html#int]])[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L128-L137]

	MACRO structure information.

	
year: Set [https://docs.python.org/3/library/typing.html#typing.Set][int [https://docs.python.org/3/library/functions.html#int]][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L128-L137]

	Model years for which MACRO is calibrated.

	
message_ix.macro.aconst(bconst: pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series], demand_ref: pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series], gdp0: pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series], k0: pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series], kpvs: pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series], rho: pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]) → pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L90-L107]

	Calculate production function coefficient of capital and labor.

This is the MACRO GAMS parameter lakl.

	
message_ix.macro.add_model_data(base: Scenario, clone: Scenario, data: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L565-L583]

	Calculate and add MACRO structure and data to clone.

	Parameters:

	
	base (Scenario) – Base scenario with a solution.

	clone (Scenario) – Clone of base scenario for adding calibration parameters.

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Data for calibration.

	
message_ix.macro.add_par(scenario: Scenario, data: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], ym1: int [https://docs.python.org/3/library/functions.html#int], *, name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L109-L126]

	Add data to the scenario.

	
message_ix.macro.add_structure(scenario: Scenario, mapping_macro_sector: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], s: Structures, ym1: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L139-L163]

	Add MACRO structure information to scenario.

	
message_ix.macro.bconst(demand_ref: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], gdp0: pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series], price_ref: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], rho: pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]) → pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L165-L177]

	Calculate production function coefficient.

This is the MACRO GAMS parameter prfconst.

	
message_ix.macro.calibrate(s, check_convergence: bool [https://docs.python.org/3/library/functions.html#bool] = True, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L585-L652]

	Calibrate a MESSAGEix scenario to parameters of MACRO.

	Parameters:

	
	s (Scenario) – MESSAGEix scenario with calibration data.

	check_convergence (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Test is MACRO-calibrated scenario converges in one iteration.

	**kwargs – Keyword arguments passed to meth:message_ix.Scenario.solve.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If calibrated scenario solves in more than one iteration.

	Returns:

	s – MACRO-calibrated scenario.

	Return type:

	message_ix.Scenario()

	
message_ix.macro.clean_model_data(data: genno.Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity], s: Structures) → pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L179-L211]

	Clean MESSAGE variable data for calibration of MACRO parameters.

	Parameters:

	data (genno.Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity]) – With short dimension names (c, l, n, y), etc.

	Returns:

	With full column names and a “value” column. Only the labels in s (levels,
nodes, sectors, and years) appear in the respective dimensions.

	Return type:

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
message_ix.macro.demand(model_demand: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], demand_ref: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], mapping_macro_sector: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], ym1: int [https://docs.python.org/3/library/functions.html#int]) → pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L213-L255]

	Prepare data for the demand_MESSAGE MACRO parameter.

	Parameters:

	
	model_demand – Values from the DEMAND MESSAGE variable.

	demand_ref – Reference values to use for the period ym1.

	mapping_macro_sector – MACRO set of the same name; see mapping_macro_sector().

	ym1 – First pre-model period; see ym1().

	Returns:

	With the dimensions (node, sector, year).

	Return type:

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If there zero or missing values in the computed data.

	
message_ix.macro.extrapolate(model_data: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], mapping_macro_sector: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], ym1: int [https://docs.python.org/3/library/functions.html#int]) → pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L257-L304]

	Extrapolate model_data to cover period ym1.

The extrapolation is done by fitting \(y = b \times m ^ x\), i.e. with two
parameters b and m. This is identical to the GROWTH() function in Microsoft
Excel (
https://support.microsoft.com/en-us/office/growth-function-541a91dc-3d5e-437d-b156-21324e68b80d
). Data are grouped on all other dimensions, and fitting/extrapolation is performed
for each group.

	Returns:

	The index does not have a year dimension; the data are implicitly for
ym1.

	Return type:

	pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]

	
message_ix.macro.gdp0(gdp_calibrate, ym1: int [https://docs.python.org/3/library/functions.html#int]) → pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L306-L309]

	Select GDP reference values from “gdp_calibrate”.

	
message_ix.macro.growth(gdp_calibrate) → pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L311-L319]

	Calculate GDP growth rates between model periods (MACRO parameter grow).

	
message_ix.macro.macro_periods(demand: genno.Quantity [https://genno.readthedocs.io/en/latest/api.html#genno.Quantity], config: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) → Set [https://docs.python.org/3/library/typing.html#typing.Set][int [https://docs.python.org/3/library/functions.html#int]][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L321-L335]

	Periods (“years”) for the MACRO model.

The intersection of those appearing in the config data and in the DEMAND
variable of the base scenario.

	
message_ix.macro.mapping_macro_sector(config: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) → pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L337-L340]

	Data for the MACRO set mapping_macro_sector.

	
message_ix.macro.prepare_computer(base: Scenario, target: Scenario | None [https://docs.python.org/3/library/constants.html#None] = None, data: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike] | None [https://docs.python.org/3/library/constants.html#None] = None) → genno.Computer [https://genno.readthedocs.io/en/latest/api.html#genno.Computer][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L654-L808]

	Prepare a Reporter to perform MACRO calibration calculations.

	Parameters:

	
	base (message_ix.Scenario) – Must have a stored solution.

	target (message_ix.Scenario) – Scenario to which to add computed data.

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict] or os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – If PathLike [https://docs.python.org/3/library/os.html#os.PathLike], the path to an Excel file containing parameter data,
one per sheet. If dict [https://docs.python.org/3/library/stdtypes.html#dict], a mapping from parameter names to data frames.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if any of the require parameters for MACRO calibration (INPUT_DATA) is
 missing.

See also

Input data for calibration

	
message_ix.macro.price(model_price: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], price_ref: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], mapping_macro_sector: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], s: Structures, ym1: int [https://docs.python.org/3/library/functions.html#int]) → pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L342-L392]

	Prepare data for the price_MESSAGE MACRO parameter.

Reads PRICE_COMMODITY from MESSAGEix, validates the data, and combines the data with
a reference price specified for the base year of MACRO.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If there zero or missing values in PRICE_COMMODITY.

	Returns:

	Data of price per commodity, region, and level.

	Return type:

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
message_ix.macro.rho(esub: pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]) → pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L394-L397]

	Calculate “rho” based on “esub”, elasticity of substitution.

	
message_ix.macro.total_cost(model_cost: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], cost_ref: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], ym1: int [https://docs.python.org/3/library/functions.html#int]) → pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L399-L429]

	Combine model_cost and cost_ref (reference year) data.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If NaN values in the cost data.

	Returns:

	Total cost of the system.

	Return type:

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
message_ix.macro.unique_set(column: str [https://docs.python.org/3/library/stdtypes.html#str], df: pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) → Set [https://docs.python.org/3/library/typing.html#typing.Set][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L431-L434]

	A set [https://docs.python.org/3/library/stdtypes.html#set] of the unique elements in column of df.

	
message_ix.macro.validate_transform(name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]], s: Structures) → pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L436-L471]

	Validate df as input data for name, and transform for further calculation.

	
message_ix.macro.ym1(df: pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series], macro_periods: Collection [https://docs.python.org/3/library/typing.html#typing.Collection][int [https://docs.python.org/3/library/functions.html#int]]) → int [https://docs.python.org/3/library/functions.html#int][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/macro.py#L528-L560]

	Period for MACRO initialization: “year minus-one”.

This is the period before the first period in the model horizon.

	Parameters:

	
	df – Data with a “year” level on a MultiIndex, usually “gdp_calibrate” in the input
data.

	macro_periods – Computed by macro_periods().

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If df does not contain at least two periods before the model horizon. This
 much data is the minimum required to compute growth rates in the historical
 periods (MACRO’s initializeyear).

 Python API

Python API

The application programming interface (API) for MESSAGEix model developers is implemented in Python.
The full API is also available from R; see Usage in R via reticulate.

	ixmp package

	message_ix package

	Model classes

	Utility methods

	Testing utilities

ixmp package

ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] provides three classes. These are fully described by the ixmp documentation [https://docs.messageix.org/projects/ixmp/en/latest/index.html], which is cross-linked from many places in the MESSAGEix documentation.

	Platform [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Platform]([name, backend])

	Instance of the modeling platform.

	TimeSeries [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.TimeSeries](mp, model, scenario[, version, ...])

	Collection of data in time series format.

	Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario](mp, model, scenario[, version, ...])

	Collection of model-related data.

ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] also provides some utility classes and methods:

	ixmp.config [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.config]

	Configuration for ixmp.

	ixmp.model.MODELS [https://docs.messageix.org/projects/ixmp/en/latest/api-model.html#ixmp.model.MODELS]

	Mapping from names to available models.

	ixmp.model.get_model [https://docs.messageix.org/projects/ixmp/en/latest/api-model.html#ixmp.model.get_model](name, **model_options)

	Return a model for name (or the default) with model_options.

message_ix package

MESSAGEix models are created using the message_ix.Scenario class. Several utility methods are also provided in the module message_ix.util.

	
class message_ix.Scenario(mp, model, scenario=None, version=None, annotation=None, scheme=None, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L22-L781]

	Bases: Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario]

MESSAGEix Scenario.

See ixmp.TimeSeries [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.TimeSeries] for the meaning of arguments mp, model, scenario,
version, and annotation. The scheme of a newly-created Scenario is always
“MESSAGE”.

This class extends ixmp.Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario] and ixmp.TimeSeries [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.TimeSeries] and
inherits all their methods. Documentation of these inherited methods is
included here for convenience. message_ix.Scenario defines
additional methods specific to MESSAGEix:

Changed in version 3.0: read_excel() and to_excel() are now methods of ixmp.Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario], but continue to work with message_ix.Scenario.

	add_cat(name, cat, keys[, is_unique])

	Map elements from keys to category cat within set name.

	add_horizon([year, firstmodelyear, data])

	Set the scenario time horizon via year and related categories.

	add_macro(data[, scenario, check_convergence])

	Add MACRO parametrization to the Scenario and calibrate.

	add_spatial_sets(data)

	Add sets related to spatial dimensions of the model.

	cat(name, cat)

	Return a list of all set elements mapped to a category.

	cat_list(name)

	Return a list of all categories for a mapping set.

	equ(name[, filters])

	Return equation data.

	firstmodelyear

	The first model year of the scenario.

	par(name[, filters])

	Return parameter data.

	read_excel(path[, add_units, init_items, ...])

	Read a Microsoft Excel file into the Scenario.

	rename(name, mapping[, keep])

	Rename an element in a set

	to_excel(path[, items, filters, max_row])

	Write Scenario to a Microsoft Excel file.

	var(name[, filters])

	Return variable data.

	vintage_and_active_years([ya_args, tl_only])

	Return matched pairs of vintage and active periods for use in data input.

	y0

	Alias for firstmodelyear.

	years_active(node, tec, yr_vtg)

	Return periods in which tec hnology of yr_vtg can be active in node.

	ya(node, tec, yr_vtg)

	Alias for years_active().

	yv_ya([ya_args, tl_only])

	Alias for vintage_and_active_years().

	
add_macro(data: Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike], scenario=None, check_convergence=True, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L677-L727]

	Add MACRO parametrization to the Scenario and calibrate.

Note

This method causes existing MACRO calibration data to be overwritten.

	Parameters:

	
	data (dict [https://docs.python.org/3/library/stdtypes.html#dict] or os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – Dictionary of required data for MACRO calibration (mapping str [https://docs.python.org/3/library/stdtypes.html#str] to
pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) or path to a file containing the data.

	scenario (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Scenario name for calibrated Scenario. If not given, the name of scenario
with “ macro” appended.

	check_convergence (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Confirm that the calibrated scenario solves in one iteration.

	kwargs – Solve options when solving the calibrated scenario.

	Returns:

	A clone of scenario with MACRO calibrated.

	Return type:

	Scenario

See also

Input data for calibration

Warning

MACRO support via add_macro() is experimental in message_ix 3.0 and may not function as expected on all possible MESSAGEix models.
See a list of known and pending issues [https://github.com/iiasa/message_ix/issues?q=is%3Aissue+is%3Aopen+label%3Amacro] on GitHub.

	
add_cat(name, cat, keys, is_unique=False)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L196-L212]

	Map elements from keys to category cat within set name.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the set.

	cat (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the category.

	keys (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Element keys to be added to the category mapping.

	is_unique (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, then cat must have only one element. An exception is
raised if cat already has an element, or if len(keys) > 1.

	
add_geodata(df: DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L485-L512]

	Add geodata.

	Parameters:

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Data to add. df must have the following columns:

	region

	variable

	subannual

	unit

	year

	value

	meta

	
add_horizon(year: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][int [https://docs.python.org/3/library/functions.html#int]] = [], firstmodelyear: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, data: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L292-L418]

	Set the scenario time horizon via year and related categories.

add_horizon() acts like add_set("year", ...), except with additional
conveniences:

	The firstmodelyear argument can be used to set the first period handled by
the MESSAGE optimization. This is equivalent to:

scenario.add_cat("year", "firstmodelyear", ..., is_unique=True)

	Parameter duration_period is assigned values based on year: The duration
of periods is calculated as the interval between successive year elements,
and the duration of the first period is set to value that appears most
frequently.

See Years, periods, and time slices for a detailed terminology of years and periods in
message_ix.

	Parameters:

	
	year (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – The set of periods.

	firstmodelyear (int [https://docs.python.org/3/library/functions.html#int], optional) – First period for the model solution. If not given, the first entry of year
is used.

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –
Deprecated since version 3.1: The “year” key corresponds to year and is required. A “firstmodelyear”
key corresponds to firstmodelyear and is optional.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the year set of the Scenario is already populated. Changing the time
 periods of an existing Scenario can entail complex adjustments to data. For
 this purpose, adjust each set and parameter individually, or see
 tools.add_year.

Examples

>>> s = message_ix.Scenario()
The following are equivalent
>>> s.add_horizon(year=[2020, 2030, 2040], firstmodelyear=2020)
>>> s.add_horizon([2020, 2030, 2040], 2020)
>>> s.add_horizon([2020, 2030, 2040])

	
add_par(name: str [https://docs.python.org/3/library/stdtypes.html#str], key_or_data: str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | Dict [https://docs.python.org/3/library/typing.html#typing.Dict] | DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] | None [https://docs.python.org/3/library/constants.html#None] = None, value=None, unit: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, comment: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L518-L625]

	Set the values of a parameter.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter.

	key_or_data (str [https://docs.python.org/3/library/stdtypes.html#str] or collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable] of str [https://docs.python.org/3/library/stdtypes.html#str] or range [https://docs.python.org/3/library/stdtypes.html#range] or dict [https://docs.python.org/3/library/stdtypes.html#dict] or pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Element(s) to be added.

	value (float [https://docs.python.org/3/library/functions.html#float] or collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable] of float [https://docs.python.org/3/library/functions.html#float], optional) – Values.

	unit (str [https://docs.python.org/3/library/stdtypes.html#str] or collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Unit symbols.

	comment (str [https://docs.python.org/3/library/stdtypes.html#str] or collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Comment(s) for the added values.

	
add_set(name: str [https://docs.python.org/3/library/stdtypes.html#str], key: str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | Dict [https://docs.python.org/3/library/typing.html#typing.Dict] | DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], comment: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L180-L290]

	Add elements to an existing set.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the set.

	key (str [https://docs.python.org/3/library/stdtypes.html#str] or collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable] of str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict] or pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Element(s) to be added. If name exists, the elements are appended to
existing elements.

	comment (str [https://docs.python.org/3/library/stdtypes.html#str] or collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Comment describing the element(s). If given, there must be the same number
of comments as elements.

	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the set name does not exist. init_set() must be called before
 add_set().

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – For invalid forms or combinations of key and comment.

	
add_spatial_sets(data)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L235-L291]

	Add sets related to spatial dimensions of the model.

	Parameters:

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Mapping of level → member. Each member may be:

	A single label for elements.

	An iterable of labels for elements.

	A recursive dict [https://docs.python.org/3/library/stdtypes.html#dict] following the same convention, defining
sub-levels and their members.

Examples

>>> s = message_ix.Scenario()
>>> s.add_spatial_sets({'country': 'Austria'})
>>> s.add_spatial_sets({'country': ['Austria', 'Germany']})
>>> s.add_spatial_sets({'country': {
... 'Austria': {'state': ['Vienna', 'Lower Austria']}}})

	
add_timeseries(df: DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], meta: bool [https://docs.python.org/3/library/functions.html#bool] = False, year_lim: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]] = (None, None)) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L302-L382]

	Add time series data.

	Parameters:

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Data to add. df must have the following columns:

	region or node

	variable

	unit

Additional column names may be either of:

	year and value—long, or ‘tabular’, format.

	one or more specific years—wide, or ‘IAMC’ format.

To support subannual temporal resolution of timeseries data, a column
subannual is optional in df. The entries in this column must have been
defined in the Platform instance using add_timeslice() beforehand. If
no column subannual is included in df, the data is assumed to contain
yearly values. See timeslices() for a detailed description of the
feature.

	meta (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True], store df as metadata. Metadata is treated specially when
Scenario.clone() is called for Scenarios created with
scheme='MESSAGE'.

	year_lim (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Respectively, earliest and latest years to add from df; data for other
years is ignored.

	
cat(name, cat)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L213-L234]

	Return a list of all set elements mapped to a category.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the set.

	cat (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the category.

	Returns:

	int [https://docs.python.org/3/library/functions.html#int] is returned if name is ‘year’.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]

	
cat_list(name)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L186-L195]

	Return a list of all categories for a mapping set.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the set.

	
change_scalar(name: str [https://docs.python.org/3/library/stdtypes.html#str], val: Real [https://docs.python.org/3/library/numbers.html#numbers.Real], unit: str [https://docs.python.org/3/library/stdtypes.html#str], comment: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L658-L677]

	Set the value and unit of a scalar.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the scalar.

	val (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – New value of the scalar.

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – New unit of the scalar.

	comment (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Description of the change.

	
check_out(timeseries_only: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L90-L110]

	Check out the Scenario.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If has_solution() is True [https://docs.python.org/3/library/constants.html#True].

See also

TimeSeries.check_out, util.maybe_check_out

	
clone(*args, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L634-L655]

	Clone the current scenario and return the clone.

See ixmp.Scenario.clone() [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario.clone] for other parameters.

	Parameters:

	
	keep_solution (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True], include all time series and model solution
(variable and equation) data from the current Scenario in the clone.
Otherwise, only time series data marked as meta=True (see
ixmp.TimeSeries.add_timeseries() [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.TimeSeries.add_timeseries]) or prior to first_model_year
(see ixmp.TimeSeries.add_timeseries() [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.TimeSeries.add_timeseries]) are cloned.

	shift_first_model_year (int [https://docs.python.org/3/library/functions.html#int], optional) – If given, certain values of the model solution are transferred to
correspondin gparameters historical_*, parameter resource_volume is
updated, and the first_model_year is shifted. The solution is then
discarded (remove_solution() [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario.remove_solution]).

	
commit(comment: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L187-L204]

	Commit all changed data to the database.

If the TimeSeries was newly created (with version='new'), version
is updated with a new version number assigned by the backend. Otherwise,
commit() does not change the version.

	Parameters:

	comment (str [https://docs.python.org/3/library/stdtypes.html#str]) – Description of the changes being committed.

See also

util.maybe_commit

	
delete_meta(*args, **kwargs) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L587-L601]

	Remove Metadata [https://docs.messageix.org/projects/ixmp/en/latest/data-model.html#data-meta] for this object.

Deprecated since version 3.1: Use remove_meta().

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Either single metadata name/identifier, or list of names.

	
discard_changes() → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L205-L208]

	Discard all changes and reload from the database.

	
equ(name, filters=None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L101-L121]

	Return equation data.

Same as ixmp.Scenario.equ() [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario.equ], except columns indexed by the MESSAGEix set
year are returned with int [https://docs.python.org/3/library/functions.html#int] dtype.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the equation.

	filters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Filters for the dimensions of the equation. See ixmp.Scenario.equ() [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario.equ].

	Returns:

	Filtered elements of the equation.

	Return type:

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
equ_list(indexed_by: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]][source] [https://github.com/iiasa/message_ix/blob/HEAD/python3.11/functools.py#L386-L389]

	

	
property firstmodelyear[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L620-L629]

	The first model year of the scenario.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
classmethod from_url(url: str [https://docs.python.org/3/library/stdtypes.html#str], errors: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['warn', 'raise'] = 'warn') → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][TimeSeries [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.TimeSeries] | None [https://docs.python.org/3/library/constants.html#None], Platform [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Platform]][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L117-L169]

	Instantiate a TimeSeries (or Scenario) given an ixmp:// URL.

The following are equivalent:

from ixmp import Platform, TimeSeries
mp = Platform(name='example')
scen = TimeSeries(mp 'model', 'scenario', version=42)

and:

from ixmp import TimeSeries
scen, mp = TimeSeries.from_url('ixmp://example/model/scenario#42')

	Parameters:

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – See parse_url.

	errors ('warn' or 'raise') – If ‘warn’, a failure to load the TimeSeries is logged as a warning, and the
platform is still returned. If ‘raise’, the exception is raised.

	Returns:

	with 2 elements:

	The TimeSeries referenced by the url.

	The Platform referenced by the url, on which the first element
is stored.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
get_geodata() → DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L533-L547]

	Fetch geodata and return it as dataframe.

	Returns:

	Specified data.

	Return type:

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
get_meta(name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L550-L565]

	Get Metadata [https://docs.messageix.org/projects/ixmp/en/latest/data-model.html#data-meta] for this object.

Metadata with the given name, attached to this (model name,
scenario name, version), is retrieved.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Metadata name/identifier.

	
has_equ(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, item_type=ItemType.EQU) → bool [https://docs.python.org/3/library/functions.html#bool][source] [https://github.com/iiasa/message_ix/blob/HEAD/python3.11/functools.py#L386-L389]

	

	
has_item(name: str [https://docs.python.org/3/library/stdtypes.html#str], item_type=ItemType.MODEL) → bool [https://docs.python.org/3/library/functions.html#bool][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L414-L432]

	Check whether the Scenario has an item name of item_type.

In general, user code should call one of has_equ(), has_par(),
has_set(), or has_var() instead of calling this method directly.

	Returns:

	
	True [https://docs.python.org/3/library/constants.html#True] – if the Scenario contains an item of item_type with name name.

	False [https://docs.python.org/3/library/constants.html#False] – otherwise

See also

items

	
has_par(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, item_type=ItemType.PAR) → bool [https://docs.python.org/3/library/functions.html#bool][source] [https://github.com/iiasa/message_ix/blob/HEAD/python3.11/functools.py#L386-L389]

	

	
has_set(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, item_type=ItemType.SET) → bool [https://docs.python.org/3/library/functions.html#bool][source] [https://github.com/iiasa/message_ix/blob/HEAD/python3.11/functools.py#L386-L389]

	

	
has_solution() → bool [https://docs.python.org/3/library/functions.html#bool][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L775-L778]

	Return True [https://docs.python.org/3/library/constants.html#True] if the Scenario contains model solution data.

	
has_var(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, item_type=ItemType.VAR) → bool [https://docs.python.org/3/library/functions.html#bool][source] [https://github.com/iiasa/message_ix/blob/HEAD/python3.11/functools.py#L386-L389]

	

	
idx_names(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L138-L147]

	Return the list of index names for an item (set, par, var, equ).

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the item

	
idx_sets(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L128-L137]

	Return the list of index sets for an item (set, par, var, equ).

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the item

	
init_equ(name: str [https://docs.python.org/3/library/stdtypes.html#str], idx_sets: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, idx_names: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/python3.11/functools.py#L386-L389]

	

	
init_item(item_type: ItemType [https://docs.messageix.org/projects/ixmp/en/latest/api-backend.html#ixmp.backend.ItemType], name: str [https://docs.python.org/3/library/stdtypes.html#str], idx_sets: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, idx_names: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L442-L488]

	Initialize a new item name of type item_type.

In general, user code should call one of init_set(),
init_par(), init_var(), or init_equ() instead of calling
this method directly.

	Parameters:

	
	item_type (ItemType) – The type of the item.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the item.

	idx_sets (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence] of str [https://docs.python.org/3/library/stdtypes.html#str] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name(s) of index sets for a 1+-dimensional item. If none are given, the item
is scalar (zero dimensional).

	idx_names (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence] of str [https://docs.python.org/3/library/stdtypes.html#str] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Names of the dimensions indexed by idx_sets. If given, they must be the
same length as idx_sets.

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –
	if idx_names are given but do not match the length of idx_sets.
 - if an item with the same name, of any item_type, already exists.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if the Scenario is not checked out (see check_out()).

	
init_par(name: str [https://docs.python.org/3/library/stdtypes.html#str], idx_sets: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, idx_names: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/python3.11/functools.py#L386-L389]

	

	
init_scalar(name: str [https://docs.python.org/3/library/stdtypes.html#str], val: Real [https://docs.python.org/3/library/numbers.html#numbers.Real], unit: str [https://docs.python.org/3/library/stdtypes.html#str], comment=None) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L626-L642]

	Initialize a new scalar and set its value.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the scalar

	val (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – Initial value of the scalar.

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unit of the scalar.

	comment (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Description of the scalar.

	
init_set(name: str [https://docs.python.org/3/library/stdtypes.html#str], idx_sets: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, idx_names: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/python3.11/functools.py#L386-L389]

	

	
init_var(name: str [https://docs.python.org/3/library/stdtypes.html#str], idx_sets: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, idx_names: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/python3.11/functools.py#L386-L389]

	

	
is_default() → bool [https://docs.python.org/3/library/functions.html#bool][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L258-L261]

	Return True [https://docs.python.org/3/library/constants.html#True] if the version is the default version.

	
items(type: ItemType [https://docs.messageix.org/projects/ixmp/en/latest/api-backend.html#ixmp.backend.ItemType] = ItemType.PAR, filters: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]] | None [https://docs.python.org/3/library/constants.html#None] = None, *, indexed_by: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, par_data: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None) → Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L334-L413]

	Iterate over model data items.

	Parameters:

	
	type (ItemType, optional) – Types of items to iterate, for instance ItemType.PAR for
parameters.

	filters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Filters for values along dimensions; same as the filters argument to
par(). Only value for ItemType.PAR.

	indexed_by (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, only iterate over items where one of the item dimensions is
indexed_by the set of this name.

	par_data (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True] (the default) and type is ItemType.PAR, also
iterate over data for each parameter.

	Yields:

	
	str [https://docs.python.org/3/library/stdtypes.html#str] – if type is not ItemType.PAR, or par_data is False [https://docs.python.org/3/library/constants.html#False]:
names of items.

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – if type is ItemType.PAR and par_data is True [https://docs.python.org/3/library/constants.html#True]:
each tuple is (item name, item data).

	
last_update() → str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L262-L265]

	Get the timestamp of the last update/edit of this TimeSeries.

	
list_items(item_type: ItemType [https://docs.messageix.org/projects/ixmp/en/latest/api-backend.html#ixmp.backend.ItemType], indexed_by: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L498-L508]

	List all defined items of type item_type.

See also

items

	
load_scenario_data() → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L111-L127]

	Load all Scenario data into memory.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the Scenario was instantiated with cache=False.

	
model: str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L22-L781]

	Name of the model associated with the TimeSeries.

	
par(name, filters=None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L122-L141]

	Return parameter data.

Same as ixmp.Scenario.par() [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario.par], except columns indexed by the MESSAGEix set
year are returned with int [https://docs.python.org/3/library/functions.html#int] dtype.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter.

	filters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Filters for the dimensions of the parameter. See ixmp.Scenario.par() [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario.par].

	Returns:

	Filtered elements of the parameter.

	Return type:

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
par_list(indexed_by: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]][source] [https://github.com/iiasa/message_ix/blob/HEAD/python3.11/functools.py#L386-L389]

	

	
preload_timeseries() → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L298-L301]

	Preload timeseries data to in-memory cache. Useful for bulk updates.

	
read_excel(path: PathLike [https://docs.python.org/3/library/os.html#os.PathLike], add_units: bool [https://docs.python.org/3/library/functions.html#bool] = False, init_items: bool [https://docs.python.org/3/library/functions.html#bool] = False, commit_steps: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L943-L977]

	Read a Microsoft Excel file into the Scenario.

	Parameters:

	
	path (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – File to read. Must have suffix ‘.xlsx’.

	add_units (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Add missing units, if any, to the Platform instance.

	init_items (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Initialize sets and parameters that do not already exist in the Scenario.

	commit_steps (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Commit changes after every data addition.

See also

Scenario/model data [https://docs.messageix.org/projects/ixmp/en/latest/file-io.html#excel-data-format], TimeSeries.read_file, to_excel

	
read_file(path: PathLike [https://docs.python.org/3/library/os.html#os.PathLike], firstyear: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, lastyear: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L616-L644]

	Read time series data from a CSV or Microsoft Excel file.

	Parameters:

	
	path (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – File to read. Must have suffix ‘.csv’ or ‘.xlsx’.

	firstyear (int [https://docs.python.org/3/library/functions.html#int], optional) – Only read data from years equal to or later than this year.

	lastyear (int [https://docs.python.org/3/library/functions.html#int], optional) – Only read data from years equal to or earlier than this year.

See also

Scenario.read_excel

	
remove_geodata(df: DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L513-L532]

	Remove geodata from the TimeSeries instance.

	Parameters:

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Data to remove. df must have the following columns:

	region

	variable

	unit

	subannual

	year

	
remove_meta(name: str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L602-L613]

	Remove Metadata [https://docs.messageix.org/projects/ixmp/en/latest/data-model.html#data-meta] for this object.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Either single metadata name/identifier, or list of names.

	
remove_par(name: str [https://docs.python.org/3/library/stdtypes.html#str], key=None) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L678-L695]

	Remove parameter values or an entire parameter.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter.

	key (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or list [https://docs.python.org/3/library/stdtypes.html#list] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Elements to be removed. If a pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], must contain the
same columns (indices/dimensions) as the parameter. If a list [https://docs.python.org/3/library/stdtypes.html#list], a
single key for a single data point; the individual elements must correspond
to the indices/dimensions of the parameter.

	
remove_set(name: str [https://docs.python.org/3/library/stdtypes.html#str], key: str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | Dict [https://docs.python.org/3/library/typing.html#typing.Dict] | DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L291-L310]

	Delete set elements or an entire set.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the set to remove (if key is None [https://docs.python.org/3/library/constants.html#None]) or from which to remove
elements.

	key (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Elements to be removed from set name.

	
remove_solution(first_model_year: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L779-L801]

	Remove the solution from the scenario.

This function removes the solution (variables and equations) and timeseries
data marked as meta=False from the scenario (see add_timeseries()).

	Parameters:

	first_model_year (int [https://docs.python.org/3/library/functions.html#int], optional) – If given, timeseries data marked as meta=False is removed only for years
from first_model_year onwards.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If Scenario has no solution or if first_model_year is not int.

	
remove_timeseries(df: DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L458-L482]

	Remove time series data.

	Parameters:

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Data to remove. df must have the following columns:

	region or node

	variable

	unit

	year

	
rename(name, mapping, keep=False)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L729-L781]

	Rename an element in a set

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the set to change (e.g., ‘technology’)

	mapping (str [https://docs.python.org/3/library/stdtypes.html#str]) – mapping of old (current) to new set element names

	keep (bool [https://docs.python.org/3/library/functions.html#bool], optional, default: False [https://docs.python.org/3/library/constants.html#False]) – keep the old values in the model

	
run_id() → int [https://docs.python.org/3/library/functions.html#int][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L266-L269]

	Get the run id of this TimeSeries.

	
scalar(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Real [https://docs.python.org/3/library/numbers.html#numbers.Real] | str [https://docs.python.org/3/library/stdtypes.html#str]][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L643-L657]

	Return the value and unit of a scalar.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the scalar.

	Returns:

	with the keys “value” and “unit”.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
scenario: str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L22-L781]

	Name of the scenario associated with the TimeSeries.

	
scheme = None[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L22-L781]

	Scheme of the Scenario.

	
set(name, filters=None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L142-L165]

	Return elements of a set.

Same as ixmp.Scenario.set() [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario.set], except columns for multi-dimensional sets
indexed by the MESSAGEix set year are returned with int [https://docs.python.org/3/library/functions.html#int] dtype.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the set.

	filters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Mapping of dimension_name → elements, where dimension_name is one of
the idx_names given when the set was initialized (see init_set()),
and elements is an iterable of labels to include in the return value.

	Returns:

	
	pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series] – If name is an index set.

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] – If name is a set defined over one or more other, index sets.

	
set_as_default() → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L254-L257]

	Set the current version as the default.

	
set_list(indexed_by: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]][source] [https://github.com/iiasa/message_ix/blob/HEAD/python3.11/functools.py#L386-L389]

	

	
set_meta(name_or_dict: str [https://docs.python.org/3/library/stdtypes.html#str] | Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], value=None) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L566-L586]

	Set Metadata [https://docs.messageix.org/projects/ixmp/en/latest/data-model.html#data-meta] for this object.

	Parameters:

	
	name_or_dict (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – If dict [https://docs.python.org/3/library/stdtypes.html#dict], a mapping of names/identifiers to values. Otherwise,
use the metadata identifier.

	value (str [https://docs.python.org/3/library/stdtypes.html#str] or float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int] or bool [https://docs.python.org/3/library/functions.html#bool], optional) – Metadata value.

	
solve(model='MESSAGE', solve_options={}, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L656-L676]

	Solve MESSAGE or MESSAGE-MACRO for the Scenario.

By default, ixmp.Scenario.solve() [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario.solve] is called with ‘MESSAGE’ as the
model argument. model may also be overwritten, e.g.:

>>> s.solve(model='MESSAGE-MACRO')

	Parameters:

	
	model ('MESSAGE' or 'MACRO' or 'MESSAGE-MACRO', optional) – Model to solve.

	solve_options (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Mapping of (option → value) to use for GAMS CPLEX solver options file.
See the MESSAGE class and DEFAULT_CPLEX_OPTIONS.

	kwargs – Other options control the execution of the underlying GAMS code; see the
MESSAGE_MACRO class and GAMSModel.

	
timeseries(region: str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, variable: str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, unit: str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, year: int [https://docs.python.org/3/library/functions.html#int] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][int [https://docs.python.org/3/library/functions.html#int]] | None [https://docs.python.org/3/library/constants.html#None] = None, iamc: bool [https://docs.python.org/3/library/functions.html#bool] = False, subannual: bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str] = 'auto') → DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L383-L457]

	Retrieve time series data.

	Parameters:

	
	iamc (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return data in wide/’IAMC’ format. If False [https://docs.python.org/3/library/constants.html#False], return data in long
format; see add_timeseries().

	region (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Regions to include in returned data.

	variable (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Variables to include in returned data.

	unit (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Units to include in returned data.

	year (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int], optional) – Years to include in returned data.

	subannual (bool [https://docs.python.org/3/library/functions.html#bool] or 'auto', optional) – Whether to include column for sub-annual specification (if bool [https://docs.python.org/3/library/functions.html#bool]);
if ‘auto’, include column if sub-annual data (other than ‘Year’) exists in
returned data frame.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If subannual is False [https://docs.python.org/3/library/constants.html#False] but Scenario has (filtered) sub-annual data.

	Returns:

	Specified data.

	Return type:

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
to_excel(path: PathLike [https://docs.python.org/3/library/os.html#os.PathLike], items: ItemType [https://docs.messageix.org/projects/ixmp/en/latest/api-backend.html#ixmp.backend.ItemType] = ItemType.SET | PAR, filters: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario]] | None [https://docs.python.org/3/library/constants.html#None] = None, max_row: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/scenario.py#L902-L942]

	Write Scenario to a Microsoft Excel file.

	Parameters:

	
	path (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – File to write. Must have suffix .xlsx.

	items (ItemType, optional) – Types of items to write. Either SET | PAR (i.e. only sets
and parameters), or MODEL (also variables and equations, i.e.
model solution data).

	filters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Filters for values along dimensions; same as the filters argument to
par().

	max_row (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum number of rows in each sheet. If the number of elements in an item
exceeds this number or EXCEL_MAX_ROWS, then an item is written to
multiple sheets named, e.g. ‘foo’, ‘foo(2)’, ‘foo(3)’, etc.

See also

Scenario/model data [https://docs.messageix.org/projects/ixmp/en/latest/file-io.html#excel-data-format], read_excel

	
transact(message: str [https://docs.python.org/3/library/stdtypes.html#str] = '', condition: bool [https://docs.python.org/3/library/functions.html#bool] = True, discard_on_error: bool [https://docs.python.org/3/library/functions.html#bool] = False)[source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L209-L253]

	Context manager to wrap code in a ‘transaction’.

	Parameters:

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Commit message to use, if any commit is performed.

	condition (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True] (the default):

	Before entering the code block, the TimeSeries (or Scenario) is
checked out.

	On exiting the code block normally (without an exception), changes are
committed with message.

If False [https://docs.python.org/3/library/constants.html#False], nothing occurs on entry or exit.

	discard_on_error (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True] (default False [https://docs.python.org/3/library/constants.html#False]), then the anti-locking behaviour of
discard_on_error() also applies to any exception raised in the block.

Example

>>> # `ts` is currently checked in/locked
>>> with ts.transact(message="replace 'foo' with 'bar' in set x"):
>>> # `ts` is checked out and may be modified
>>> ts.remove_set("x", "foo")
>>> ts.add_set("x", "bar")
>>> # Changes to `ts` have been committed

	
property url: str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://github.com/iiasa/message_ix/blob/HEAD/ixmp/core/timeseries.py#L270-L295]

	URL fragment for the TimeSeries.

This has the format {model name}/{scenario name}#{version}, with the same
values passed when creating the TimeSeries instance.

Examples

To form a complete URL (e.g. to use with from_url()), use a configured
ixmp.Platform [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Platform] name:

>>> platform_name = "my-ixmp-platform"
>>> mp = Platform(platform_name)
>>> ts = TimeSeries(mp, "foo", "bar", 34)
>>> ts.url
"foo/bar#34"
>>> f"ixmp://{platform_name}/{ts.url}"
"ixmp://platform_name/foo/bar#34"

Note

Use caution: because Platform configuration is system-specific, other
systems must have the same configuration for platform_name in order for
the URL to refer to the same TimeSeries/Scenario.

	
var(name, filters=None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L166-L185]

	Return variable data.

Same as ixmp.Scenario.var() [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario.var], except columns indexed by the MESSAGEix set
year are returned with int [https://docs.python.org/3/library/functions.html#int] dtype.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the variable.

	filters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Filters for the dimensions of the variable. See ixmp.Scenario.var() [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario.var].

	Returns:

	Filtered elements of the variable.

	Return type:

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
var_list(indexed_by: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]][source] [https://github.com/iiasa/message_ix/blob/HEAD/python3.11/functools.py#L386-L389]

	

	
version = None[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L22-L781]

	Version of the TimeSeries. Immutable for a specific instance.

	
vintage_and_active_years(ya_args: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int] | str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, tl_only: bool [https://docs.python.org/3/library/functions.html#bool] = True, **kwargs) → DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L419-L567]

	Return matched pairs of vintage and active periods for use in data input.

Each returned pair of (vintage period \(y^V\), active period \(y\))
satisfies all of the following conditions:

	\(y^V, y \in Y\): both vintage and active period are in the year set
of the Scenario.

	\(y^V \leq y\): a technology cannot be active before it is constructed.

	If ya_args (node \(n\), technology \(t\), and optionally
\(y^V\)) are given:

	\(y^V\) is in the subset of \(Y\) for which
\(\text{technical_lifetime}_{n,t,y^V}\) is defined (or the single,
specified value).

	\(y - y^V + \text{duration_period}_{n,t,y^V} <
\text{technical_lifetime}_{n,t,y^V}\): the active period is partly or fully
within the technical lifetime defined for that technology, node, and
vintage. This is the same condition as years_active().

	If ya_args are given and tl_only is True [https://docs.python.org/3/library/constants.html#True] (the default): \(y\)
is in the subset of \(Y\) for which
\(\text{technical_lifetime}_{n,t,y}\) is defined. [1]

	(Deprecated) If in_horizon is True [https://docs.python.org/3/library/constants.html#True]: \(y \geq y_0\), the
firstmodelyear.

[1]
note this applies to \(y\), whereas condition 3(a) applies to
\(y^V\).

	Parameters:

	
	ya_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Either length 2 (node, technology) or length 3 (node, technology,
year_vtg). Supplied directly to years_active(). If the third element
is omitted, years_active() is called repeatedly, once for each vintage
for which a technical lifetime value is set (condition (3)).

	tl_only (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Condition (4), above.

	in_horizon (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Condition (5), above.

Deprecated since version 3.6: In message_ix 4.0 or later, in_horizon will be removed, and the
default behaviour of vintage_and_active_years() will change to the
equivalent of in_horizon = False [https://docs.python.org/3/library/constants.html#False].

	Returns:

	with columns “year_vtg” and “year_act”, in which each row is a valid pair.

	Return type:

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Examples

pandas.DataFrame.query() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html#pandas.DataFrame.query] can be used to further manipulate the data in the
returned data frame. To limit the vintage periods included:

>>> base = s.vintage_and_active_years(("node", "tech"))
>>> df = base.query("2020 <= year_vtg")

Limit the active periods included:

>>> df = base.query("2040 < year_act")

Limit year_act to the first model year or later (same as deprecated in_horizon
argument):

>>> df = base.query(f"{s.firstmodelyear} <= year_act")

More complex expressions and a chained pandas call:

>>> df = s.vintage_and_active_years(
... ("node", "tech"), tl_only=False
...).query("2025 <= year_act or year_vtg < 2010")

See also

Years, periods, and time slices, pandas.DataFrame.query [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html#pandas.DataFrame.query], years_active

	
property y0[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L630-L633]

	Alias for firstmodelyear.

	
ya(node: str [https://docs.python.org/3/library/stdtypes.html#str], tec: str [https://docs.python.org/3/library/stdtypes.html#str], yr_vtg: int [https://docs.python.org/3/library/functions.html#int] | str [https://docs.python.org/3/library/stdtypes.html#str]) → List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L571-L616]

	Alias for years_active().

	
years_active(node: str [https://docs.python.org/3/library/stdtypes.html#str], tec: str [https://docs.python.org/3/library/stdtypes.html#str], yr_vtg: int [https://docs.python.org/3/library/functions.html#int] | str [https://docs.python.org/3/library/stdtypes.html#str]) → List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L571-L616]

	Return periods in which tec hnology of yr_vtg can be active in node.

The parameters duration_period and
technical_lifetime are used to determine which periods are partly or fully
within the lifetime of the technology.

	Parameters:

	
	node (str [https://docs.python.org/3/library/stdtypes.html#str]) – Node name.

	tec (str [https://docs.python.org/3/library/stdtypes.html#str]) – Technology name.

	yr_vtg (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Vintage year.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]

	
yv_ya(ya_args: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int] | str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, tl_only: bool [https://docs.python.org/3/library/functions.html#bool] = True, **kwargs) → DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/core.py#L419-L567]

	Alias for vintage_and_active_years().

Model classes

	MESSAGE([name])

	Model class for MESSAGE.

	MACRO(*args, **kwargs)

	Model class for MACRO.

	MESSAGE_MACRO(*args, **kwargs)

	Model class for MESSAGE_MACRO.

	GAMSModel([name])

	Extended ixmp.model.gams.GAMSModel [https://docs.messageix.org/projects/ixmp/en/latest/api-model.html#ixmp.model.gams.GAMSModel] for MESSAGE & MACRO.

	DEFAULT_CPLEX_OPTIONS

	Solver options used by Scenario.solve().

	Item(name, type, expr, coords, ...] =, dims, ...)

	Description of an ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] item: equation, parameter, set, or variable.

	ItemType(value[, names, module, qualname, ...])

	Type of data items in ixmp.TimeSeries [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.TimeSeries] and ixmp.Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario].

	
message_ix.models.DEFAULT_CPLEX_OPTIONS = {'advind': 0, 'epopt': 1e-06, 'lpmethod': 4, 'threads': 4}

	Solver options used by Scenario.solve().

These configure the GAMS CPLEX solver (or another solver, if selected); see the solver documentation [https://www.gams.com/latest/docs/S_CPLEX.html] for possible values.

	
class message_ix.models.GAMSModel(name=None, **model_options)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L148-L226]

	Extended ixmp.model.gams.GAMSModel [https://docs.messageix.org/projects/ixmp/en/latest/api-model.html#ixmp.model.gams.GAMSModel] for MESSAGE & MACRO.

The MESSAGE, MACRO, and MESSAGE_MACRO child classes encapsulate the GAMS code for the core MESSAGE (or MACRO) mathematical formulation.

The class receives model_options via Scenario.solve(). Some of these are passed on to the parent class ixmp.model.gams.GAMSModel [https://docs.messageix.org/projects/ixmp/en/latest/api-model.html#ixmp.model.gams.GAMSModel] (see there for a list); others are handled as described below.

The “model_dir” option may be set in the user’s ixmp configuration file [https://docs.messageix.org/projects/ixmp/en/latest/api.html#configuration] using the key “message model dir”.
If not set, it defaults to “message_ix/model” below the directory where message_ix is installed.

The “solve_options” option may be set in the user’s ixmp configuration file using the key “message solve options”.
If not set, it defaults to DEFAULT_CPLEX_OPTIONS.

For example, with the following configuration file:

{
 "platform": {
 "default": "my-platform",
 "my-platform": {"backend": "jdbc", "etc": "etc"},
 },
 "message model dir": "/path/to/custom/gams/source/files",
 "message solve options": {"lpmethod": 4},
}

The following are equivalent:

Model options given explicitly
scen.solve(
 model_dir="/path/to/custom/gams/source/files",
 solve_options=dict(lpmethod=4),
)

Model options are read from configuration file
scen.solve()

GDX input and output files generated using this class will contain a 2-dimensional set named ixmp_version, wherein the first element of each member is a package name from the record_version_packages parameter, and the second is its version according to importlib.metadata.version().
If the package is not installed, the string “(not installed)” is stored.

The following tables list all model options:

Options in message_ix.models.GAMSModel or overridden from ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp]

	Option

	Usage

	Default value

	model_dir

	Path to GAMS source files.

	See above.

	model_file

	Path to GAMS source file.

	"{model_dir}/{model_name}_run.gms"

	in_file

	Path to write GDX input file.

	"{model_dir}/data/MsgData_{case}.gdx"

	out_file

	Path to read GDX output file.

	"{model_dir}/output/MsgOutput_{case}.gdx"

	solve_args

	Arguments passed directly to GAMS.

	[
 '--in="{in_file}"',
 '--out="{out_file}"',
 '--iter="{model_dir}/output/MsgIterationReport_{case}.gdx"'
]

	solve_options

	Options for the GAMS LP solver.

	DEFAULT_CPLEX_OPTIONS

	record_version_packages

	Python package versions to record.

	["message_ix", "ixmp"]

Option defaults inherited from ixmp.model.gams.GAMSModel [https://docs.messageix.org/projects/ixmp/en/latest/api-model.html#ixmp.model.gams.GAMSModel]

	Option

	Default value

	case

	"{scenario.model}_{scenario.scenario}"

	gams_args

	["LogOption=4"]

	check_solution

	True [https://docs.python.org/3/library/constants.html#True]

	comment

	None [https://docs.python.org/3/library/constants.html#None]

	equ_list

	None [https://docs.python.org/3/library/constants.html#None]

	var_list

	None [https://docs.python.org/3/library/constants.html#None]

	
items: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Item][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L148-L226]

	Mapping from model item (equation, parameter, set, or variable) names to
Item describing the item.

	
run(scenario)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L189-L226]

	Execute the model.

GAMSModel creates a file named cplex.opt in the model directory containing
the “solve_options”, as described above.

Warning

GAMSModel can solve Scenarios in two or more Python processes
simultaneously; but using different CPLEX options in each process may
produce unexpected results.

	
class message_ix.models.MESSAGE(name=None, **model_options)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L266-L328]

	Bases: GAMSModel

Model class for MESSAGE.

	
items: MutableMapping [https://docs.python.org/3/library/typing.html#typing.MutableMapping][str [https://docs.python.org/3/library/stdtypes.html#str], Item][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L266-L328]

	All equations, parameters, sets, and variables in the MESSAGE formulation.

Keys are the names of items (sets, parameters, variables, and equations); values are Item instances.
These include all items listed in the MESSAGE mathematical specification, i.e. Sets and mappings and Parameter definition.

	
classmethod initialize(scenario)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L304-L328]

	Set up scenario with required sets and parameters for MESSAGE.

See also

items

	
class message_ix.models.MACRO(*args, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L901-L929]

	Bases: GAMSModel

Model class for MACRO.

	
items: MutableMapping [https://docs.python.org/3/library/typing.html#typing.MutableMapping][str [https://docs.python.org/3/library/stdtypes.html#str], Item][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L901-L929]

	All equations, parameters, sets, and variables in the MACRO formulation.

	
GAMS_min_version = '24.8.1'[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L901-L929]

	MACRO uses the GAMS break; statement, and thus requires GAMS 24.8.1 or later.

	
classmethod initialize(scenario, with_data=False)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L921-L929]

	Initialize the model structure.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str] = 'MACRO'[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L901-L929]

	Model name.

	
class message_ix.models.MESSAGE_MACRO(*args, **kwargs)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L985-L1012]

	Bases: MESSAGE, MACRO

Model class for MESSAGE_MACRO.

MESSAGE_MACRO solves the MESSAGE and MACRO models iteratively, connecting changes in technology activity and resource demands (from MESSAGE) to changes in final demands and prices (from MACRO).
This iteration continues until the solution converges; i.e. the two models reach a stable point for the values of these parameters.

MESSAGE_MACRO accepts three additional model_options that control the behaviour of this iteration algorithm:

	max_adjustment (float [https://docs.python.org/3/library/functions.html#float], default 0.2): the maximum absolute relative change in final demands between iterations.
If MACRO returns demands that have changed by more than a factor outside the range (1 - max_adjustment, 1 + max_adjustment) since the previous iteration, then the change is confined to the limits of that range for the next run of MESSAGE.

	convergence_criterion (float [https://docs.python.org/3/library/functions.html#float], default 0.01): threshold for model convergence.
This option applies to the same value as max_adjustment: the relative change in final demands between two iterations.
If the absolute relative change is less than convergence_criterion, the linked model run is complete.

	max_iteration (int [https://docs.python.org/3/library/functions.html#int], default 50): the maximum number of iterations between the two models.
If the solution does not converge after this many iterations, the linked model run fails and no valid result is produced.

See also

Scenario.add_macro()

	
items: MutableMapping[str [https://docs.python.org/3/library/stdtypes.html#str], Item][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L985-L1012]

	All equations, parameters, sets, and variables in the MESSAGE-MACRO formulation.

	
classmethod initialize(scenario, with_data=False)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L1008-L1012]

	Set up scenario with required sets and parameters for MESSAGE.

See also

items

	
name: str [https://docs.python.org/3/library/stdtypes.html#str] = 'MESSAGE-MACRO'[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L985-L1012]

	Model name.

	
message_ix.models.DIMS = {'c': ('commodity', 'commodity'), 'e': ('emission', 'emission'), 'g': ('grade', 'grade'), 'h': ('time', 'time'), 'hd': ('time', 'time_dest'), 'ho': ('time', 'time_origin'), 'l': ('level', 'level'), 'm': ('mode', 'mode'), 'ms': ('mode', 'storage_mode'), 'n': ('node', 'node'), 'nd': ('node', 'node_dest'), 'nl': ('node', 'node_loc'), 'no': ('node', 'node_origin'), 'node_parent': ('node', 'node_parent'), 'nr': ('node', 'node_rel'), 'ns': ('node', 'node_share'), 'q': ('rating', 'rating'), 'r': ('relation', 'relation'), 's': ('land_scenario', 'land_scenario'), 't': ('technology', 'technology'), 'ta': ('technology', 'technology_addon'), 'time_parent': ('time', 'time_parent'), 'tp': ('technology', 'technology_primary'), 'ts': ('technology', 'storage_tec'), 'u': ('land_type', 'land_type'), 'y': ('year', 'year'), 'ya': ('year', 'year_act'), 'yr': ('year', 'year_rel'), 'yv': ('year', 'year_vtg')}

	Common dimension name abbreviations mapped to tuples with:

	the respective coordinate/index set, and

	the full dimension name.

	
class message_ix.models.Item(name: str, type: ~ixmp.backend.ItemType, expr: dataclasses.InitVar[str] = '', coords: ~typing.Tuple[str, ...] = <factory>, dims: ~typing.Tuple[str, ...] = <factory>, description: str | None = None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L62-L124]

	Description of an ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] item: equation, parameter, set, or variable.

Instances of this class carry only structural information, not data.

	
coords: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], ...][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L62-L124]

	Coordinates of the item; that is, the names of sets that index its dimensions.
The same set name may be repeated if it indexes multiple dimensions.

	
description: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L62-L124]

	Text description of the item.

	
dims: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], ...][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L62-L124]

	Dimensions of the item.

	
expr: dataclasses.InitVar[str [https://docs.python.org/3/library/stdtypes.html#str]] = ''[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L62-L124]

	String expression for coords and dims. Split on spaces and parsed
using DIMS so that, for instance, “nl yv” results in entries for
for “node”, “year” in coords, and “node_loc”, “year_vtg” in dims.

	
property ix_type: str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L102-L109]

	“equ”, “par”, “set”, or “var”.

Read-only.

	Type:

	Lower-case string form of type

	
name: str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L62-L124]

	Name of the item.

	
to_dict() → dict [https://docs.python.org/3/library/stdtypes.html#dict][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L110-L124]

	Return the dict [https://docs.python.org/3/library/stdtypes.html#dict] representation used internally in ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp].

This has the keys:

	ix_type: same as ix_type.

	idx_sets: same as coords.

	idx_names: same as dims, but only included if these are (a)
non-empty and (b) different from coords.

	
type: ItemType [https://docs.messageix.org/projects/ixmp/en/latest/api-backend.html#ixmp.backend.ItemType][source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/models.py#L62-L124]

	Type of the item, for instance ItemType.PAR [https://docs.messageix.org/projects/ixmp/en/latest/api-backend.html#ixmp.backend.ItemType.PAR].

Utility methods

	
message_ix.util.expand_dims(scenario: Scenario, name, **data)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/util/__init__.py#L197-L235]

	Expand dimensions of parameter name on scenario, filling with data.

This function is for use when an existing parameter name has dimensions that are a
subset of those that would be created by make_df(), i.e. those given by
MESSAGE.items.

This can occur when the underlying structure of MESSAGE and the model core is
enhanced by adding dimensions to existing parameters. Existing scenario data in
users’ databases can not then be automatically updated.

expand_dims() helps users to update this data manually. It:

	Retrieves the existing parameter data for name.

	Passes this existing data, plus any data given as keyword arguments, to
make_df(). The result must be a data frame with no empty values; in other
words, data must include all the dimensions to be added to name.

	Re-initializes the parameter name on scenario, with the dimensions given by
MESSAGE.items.

	Adds the expanded data.

The modifications (steps 3 and 4) are wrapped using transact().

	
message_ix.util.make_df(name, **data)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/util/__init__.py#L14-L147]

	Return a data frame for parameter name filled with data.

make_df() always returns a data frame with the columns required by
add_par(): the dimensions of the parameter name, plus ‘value’ and
‘unit’. Columns not listed in data are left empty.

The data keyword arguments can be passed in many ways; see the
Keyword Arguments [https://docs.python.org/3/tutorial/controlflow.html#tut-keywordargs] and “Function Examples” sections of the Python
introductory tutorial, or the examples below.

Examples

>>> make_df(
... "demand", node=["foo", "bar"], commodity="baz", value=[1.2, 3.4]
...)
 node commodity level year time value unit
0 foo baz None None None 1.2 None
1 bar baz None None None 3.4 None

Pass some values as direct keyword arguments, and others by unpacking a dictionary:

>>> common = dict(
... commodity="light",
... level="useful",
... time="year",
... unit="GWa",
...)
>>> make_df(
... "demand",
... node=["Westeros", "Middle-earth"],
... year=[680, 700],
... value=[50, 80],
... # Use values from `common` as additional keyword args:
... **common,
...)
 node commodity level year time value unit
0 Westeros light useful 680 year 50 GWa
1 Middle-earth light useful 700 year 50 GWa

Code that uses the deprecated signature, such as:

>>> base = {"year": [2020, 2021, 2022]}
>>> make_df(base, value=1., unit="y")
 year value unit
0 1 1.0 y
1 2 1.0 y
2 3 1.0 y

or:

>>> base = dict(
... node=["Westeros", "Middle-earth"],
... year=[680, 700],
... time="year",
... unit="-",
...)
>>> make_df(base, mode="standard")
 node year time unit mode
0 Westeros 680 year - standard
1 Middle-earth 700 year - standard

…can either be adjusted to use the new signature:

>>> make_df("duration_period", **base, value=1., unit="y")

or, emulated using the pandas.DataFrame.assign() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.assign.html#pandas.DataFrame.assign] method:

>>> pd.DataFrame(base).assign(value=1., unit="y")

The former is recommended, because it will ensure the result has the correct columns
for the parameter.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a parameter listed in MESSAGE.items or MACRO.items.

	data (optional) – Contents for dimensions of the parameter, its ‘value’, or ‘unit’. Other keys are
ignored.

	Return type:

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if name is not the name of a MESSAGE or MACRO parameter; if arrays in data
 have uneven lengths.

Testing utilities

	
message_ix.testing.make_dantzig(mp, solve=False, multi_year=False, **solve_opts)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/testing/__init__.py#L275-L430]

	Return an message_ix.Scenario for Dantzig’s canning problem.

	Parameters:

	
	mp (ixmp.Platform [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Platform]) – Platform on which to create the scenario.

	solve (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the scenario is solved.

	multi_year (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the scenario has years 1963–1965 inclusive. Otherwise, the
scenario has the single year 1963.

	
message_ix.testing.make_westeros(mp, emissions=False, solve=False, quiet=True, model_horizon=[700, 710, 720], *, request: pytest.FixtureRequest | None [https://docs.python.org/3/library/constants.html#None] = None)[source] [https://github.com/iiasa/message_ix/blob/HEAD/message_ix/testing/__init__.py#L432-L628]

	Return an message_ix.Scenario for the Westeros model.

This is the same model used in the westeros_baseline.ipynb tutorial.

	Parameters:

	
	mp (ixmp.Platform [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Platform]) – Platform on which to create the scenario.

	emissions (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the emissions_factor parameter is also populated for CO2.

	solve (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the scenario is solved.

 Usage in R via reticulate

Usage in R via reticulate

message_ix and ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] are fully usable in R via reticulate [https://rstudio.github.io/reticulate/], a package that allows nearly seamless access to the Python API.
See Installation for instructions on installing R and reticulate.
No additional R packages are needed. [1]

Once installed, use reticulate to import the Python packages:

library(reticulate)
ixmp <- import("ixmp")
message_ix <- import("message_ix")

This creates two global variables, ixmp and message_ix, that can be used much like the Python modules:

mp <- ixmp$Platform(name = "default")
scen <- message_ix$Scenario(mp, "model name", "scenario name")
etc.

See the R versions of the Austria tutorials for full examples of building models.

Some tips:

	If using Anaconda, you may need to direct reticulate to use the Python executable from the same conda environment where message_ix and ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] are installed.
See the reticulate documentation for usage of commands like:

Specify python binaries and environment under which messageix is installed
use_condaenv("message_env")
or
use_python("C:/.../anaconda3/envs/message_env/")

	As shown above, R uses the $ character instead of . to access methods and properties of objects.
Where Python code examples show, for instance, scen.add_par(...), R code should instead use scen$add_par(...).

	MESSAGEix model parameters with dimensions indexed by the year set (e.g. dimensions named year_act or year_vtg) must be indexed by integers; but R treats numeric literals as floating point values.
Therefore, instead of:

ya1 = 2010
ya2 = c(2020, 2030, 2040)
ya3 = seq(2050, 2100, 10)

...store parameter data using year_act = ya1, ya2, or ya3

…use as.integer() to convert:

ya1 = as.integer(2010)
ya2 = sapply(c(2020, 2030, 2040), as.integer)
ya3 = as.integer(seq(2050, 2100, 10))

[1]
The former rmessageix and rixmp packages were removed in message_ix/ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] v3.3.0 (2021-05-28).

 What’s New

What’s New

v3.8.0 (2024-01-12)

Migration notes

Update code that imports from the following modules:

	message_ix.reporting → use message_ix.report.

	message_ix.reporting.computations → use message_ix.report.operator.

Code that imports from the old locations will continue to work, but will raise DeprecationWarning [https://docs.python.org/3/library/exceptions.html#DeprecationWarning].

All changes

	message_ix is tested and compatible with Python 3.12 [https://www.python.org/downloads/release/python-3120/] (PR #767 [https://github.com/iiasa/message_ix/pull/767]).
Support for Python 3.7, which reached end-of-life on 2023-06-27 [https://peps.python.org/pep-0537/#lifespan], is dropped (PR #738 [https://github.com/iiasa/message_ix/pull/738]).
message_ix now requires Python version 3.8 or greater.

	Rename message_ix.report (PR #761 [https://github.com/iiasa/message_ix/pull/761]).

	Add the LPdiag tool to diagnose and analyze numerical issues in linear programming (LP) problems stored in MPS-format files (PR #704 [https://github.com/iiasa/message_ix/pull/704]).

	GDX files generated by GAMSModel (thus MESSAGE, MACRO, and MESSAGE_MACRO) will contain an ixmp_version set with information on the versions of ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] and message_ix that generated the file (#747 [https://github.com/iiasa/message_ix/issue/747], PR #767 [https://github.com/iiasa/message_ix/pull/767]).

	New reporting operator model_periods() and automatic keys y::model and y0 (PR #738 [https://github.com/iiasa/message_ix/pull/738]).

	Improve readability of LaTeX equations in docs (PR #721 [https://github.com/iiasa/message_ix/pull/721]).

	Replace MESSAGE_ITEMS and MACRO_ITEMS with MESSAGE.items and MACRO.items, respectively (PR #761 [https://github.com/iiasa/message_ix/pull/761]).

	Bugfix: Scenario.add_macro() would not correctly handle configuration that mapped a MESSAGE (commodity, level) to MACRO sector when the commodity and sector names were different (PR #719 [https://github.com/iiasa/message_ix/pull/719]).

	Expand Calibrate and tune MESSAGE-MACRO documentation, particularly code documentation (#315 [https://github.com/iiasa/message_ix/issue/315], PR #719 [https://github.com/iiasa/message_ix/pull/719]).

	Bugfix: operator.as_message_df() would error if a particular dimension was supplied via the common argument but not present in qty (PR #719 [https://github.com/iiasa/message_ix/pull/719]).

v3.7.0 (2023-05-16)

Migration notes

	The default lpmethod has been changed from “Dual Simplex” (lpmethod=2) to “Barrier” (lpmethod=4).
NOTE: this may result in changes to the solution.
In order to use the previous default lpmethod, the user-specific default setting can be set through the user’s ixmp configuration file.
Alternatively, the lpmethod can be specified directly as an argument when solving a scenario.
Both of these configuration methods are further explained here.

	The dimensionality of one set and two parameters (map_tec_storage, storage_initial, and storage_self_discharge) are extended to allow repesentation of the mode of operation of storage technologies and the temporal level of storage containers.
If these items are already populated with data in a Scenario, this data will be incompatible with the MESSAGE GAMS implementation in this release; a UserWarning [https://docs.python.org/3/library/exceptions.html#UserWarning] will be emitted when the Scenario is instantiated, and solve() will raise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].
(If these items are empty, their dimensions will be updated automatically.
New Scenarios are unaffected.)

Users must update data for these items, specifically:

	Existing parameter or set

	Dimension(s) to add

	map_tec_storage

	mode, storage_mode, lvl_temporal

	storage_initial

	mode

	storage_self_discharge

	mode

For the set map_tec_storage, values for the new dimensions represent, respectively, the mode of operation for charge/discharge technologies, and the storage_mode and lvl_temporal for the corresponding storage device.
For the two parameters, expand_dims() is provided to help:

from message_ix import Scenario
from message_ix.util import expand_dims

scen, platform = Scenario.from_url("…")

Re-use the existing data in `scen`, adding the `mode` dimension
expand_dims(scen, "storage_initial", mode="an existing mode")

All changes

	Add a tutorial for Westeros multi-node and different trade possibilities (PR #683 [https://github.com/iiasa/message_ix/pull/683]).

	Add additional oscillation detection mechanism for macro iterations (PR #645 [https://github.com/iiasa/message_ix/pull/645], PR #676 [https://github.com/iiasa/message_ix/pull/676])

	Adjust default lpmethod from “Dual Simplex” (2) to “Barrier” (4); do NOT remove cplex.opt file(s) after solving workflow completes (PR #657 [https://github.com/iiasa/message_ix/pull/657]).

	Adjust Scenario.add_macro() calculations for pandas 1.5.0 (PR #656 [https://github.com/iiasa/message_ix/pull/656]).

	Ensure levelized_cost are also calculated for technologies with only variable costs (PR #653 [https://github.com/iiasa/message_ix/pull/653]).

	Correct calculation of COST_NODAL_NET for standalone MESSAGE (PR #648 [https://github.com/iiasa/message_ix/pull/648])

	Account for difference in period-length in equations NEW_CAPACITY_CONSTRAINT_LO and NEW_CAPACITY_CONSTRAINT_UP (PR #654 [https://github.com/iiasa/message_ix/pull/654])

	Extend functionality of storage solutions to include “mode” and temporal level (PR #633 [https://github.com/iiasa/message_ix/pull/633])

	Introduce a citation file CITATION.cff with citation information (PR #695 [https://github.com/iiasa/message_ix/pull/695]).

	Correct GAMS for the assignment of “capacity_factor” at “year” (PR #705 [https://github.com/iiasa/message_ix/pull/705]).

v3.6.0 (2022-08-17)

Migration notes

	The in_horizon argument to vintage_and_active_years() is deprecated, and will be removed in message_ix 4.0 or later.
At the same time, the behaviour will change to be the equivalent of providing in_horizon = False [https://docs.python.org/3/library/constants.html#False], i.e. the method will no longer filter to the scenario time horizon by default.
To prepare for this change, user code that expects values confined to the time horizon can be altered to use pandas.DataFrame.query() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html#pandas.DataFrame.query]:

df = scen.vintage_and_active_years().query(f"{scen.y0} <= year_vtg")

	The default reports (tables in IAMC format) available in a Reporter have changed keys to e.g. message::default with two colons.
Code using e.g. message:default (one colon) should be updated to use the current keys.

This matches fixed behaviour upstream in genno [https://genno.readthedocs.io/en/latest/api.html#module-genno] version 1.12 to avoid unintended confusion with keys like A:i: i (after the first colon) is the name for the sole dimension of a 1-dimensional quantity, whereas default in message::default is a tag.

All changes

	Adjust keys for IAMC-format reporting nodes (PR #628 [https://github.com/iiasa/message_ix/pull/628], PR #641 [https://github.com/iiasa/message_ix/pull/641])

	New reporting computation as_message_df() (PR #628 [https://github.com/iiasa/message_ix/pull/628]).

	Extend functionality of vintage_and_active_years(); add aliases yv_ya(), ya(), and y0 (PR #572 [https://github.com/iiasa/message_ix/pull/572], PR #623 [https://github.com/iiasa/message_ix/pull/623]).

	Add scripts and HOWTO for documentation videos (PR #396 [https://github.com/iiasa/message_ix/pull/396]).

v3.5.0 (2022-05-06)

Migration notes

The format of input data files for MACRO calibration has been changed in PR #327 [https://github.com/iiasa/message_ix/pull/327].
Files compatible with v3.4.0 and earlier will not work with this version and should be updated; see details of the current data file format in the documentation.

PR #561 [https://github.com/iiasa/message_ix/pull/561] corrected the model internal logic for handling zero values in the capacity_factor parameter.
Before this change, the GAMS code inserted a capacity_factor value of 1.0 where such zero values appeared; now, zeros are preserved, so the technologies may be created (CAP) but none of their capacity will be usable at the
\((n, t, y^V, y, h)\) where zero values appear.
This is consistent with the general concept of a “capacity factor”: for instance, a solar photovoltaic technology for electricity generation may have a non-zero capacity with a capacity factor of 0 at \(h=\text{night}\).
This may cause changes in model output for scenarios where such zero values appear; see #591 [https://github.com/iiasa/message_ix/issue/591] for discussion, including methods to check for and adjust/remove such values.

All changes

	Extend documentation on historical capacity and activity values (PR #496 [https://github.com/iiasa/message_ix/pull/496])

	Extend documentation on decision variables “CAP_NEW” and “CAP” (PR #595 [https://github.com/iiasa/message_ix/pull/595])

	Extend documentation to guide users through the Westeros tutorials (PR #594 [https://github.com/iiasa/message_ix/pull/594]).

	Add new logo and diagram to the documentation (PR #597 [https://github.com/iiasa/message_ix/pull/597]).

	Correct typo in GAMS formulation, Equation RENEWABLES_EQUIVALENCE (PR #581 [https://github.com/iiasa/message_ix/pull/581]).

	Handle zero values in capacity_factor in models with sub-annual time resolution; expand tests (#515 [https://github.com/iiasa/message_ix/issue/515], PR #561 [https://github.com/iiasa/message_ix/pull/561]).

	Extend explanations, update make_df() signature in tutorials (PR #524 [https://github.com/iiasa/message_ix/pull/524]).

	Improve configurability of macro; see the documentation (PR #327 [https://github.com/iiasa/message_ix/pull/327]).

	Split Reporter.add_tasks() for use without an underlying :class:.`Scenario` (PR #567 [https://github.com/iiasa/message_ix/pull/567]).

	Allow setting the “model_dir” and “solve_options” options for GAMSModel (and subclasses MESSAGE, MACRO, and MESSAGE_MACRO) through the user’s ixmp configuration file; expand documentation (PR #557 [https://github.com/iiasa/message_ix/pull/557]).

v3.4.0 (2022-01-27)

All changes

	Expand the documentation with an outlook of the MESSAGEix usage (PR #520 [https://github.com/iiasa/message_ix/pull/520]).

	Adjust test suite for pyam v1.1.0 compatibility (PR #499 [https://github.com/iiasa/message_ix/pull/499]).

	Add Westeros tutorial on historical parameters (PR #478 [https://github.com/iiasa/message_ix/pull/478]).

	Update reference for activity and capacity soft constraints (PR #474 [https://github.com/iiasa/message_ix/pull/474]).

	Update years_active() to use sorted results (PR #491 [https://github.com/iiasa/message_ix/pull/491]).

	Adjust the Westeros reporting tutorial to pyam 1.0 deprecations (PR #492 [https://github.com/iiasa/message_ix/pull/492]).

	Change precision of GAMS check for parameter “duration_time” (PR #513 [https://github.com/iiasa/message_ix/pull/513]).

	Update light and historic demand in Westeros baseline tutorial (PR #523 [https://github.com/iiasa/message_ix/pull/523]).

	Enhance mathematical formulation to represent sub-annual time slices consistently (PR #509 [https://github.com/iiasa/message_ix/pull/509]).

v3.3.0 (2021-05-28)

Migration notes

rmessageix (and rixmp) are deprecated and removed, as newer versions of the R reticulate [https://rstudio.github.io/reticulate/] package allow direct import and use of the Python modules with full functionality.
See the updated page for Usage in R via reticulate, and the updated instructions on how to Install R and reticulate.

All changes

	Update the Westeros tutorial on flexible generation (PR #369 [https://github.com/iiasa/message_ix/pull/369]).

	Add a Westeros tutorial on modeling renewable resource supply curves (PR #370 [https://github.com/iiasa/message_ix/pull/370]).

	Update the Westeros tutorial on firm capacity (PR #368 [https://github.com/iiasa/message_ix/pull/368]).

	Remove rmessageix (PR #473 [https://github.com/iiasa/message_ix/pull/473]).

	Expand documentation of commodity storage sets, parameters, and equations (PR #473 [https://github.com/iiasa/message_ix/pull/473]).

	Add two new Westeros tutorial on creating scenarios from Excel files (PR #450 [https://github.com/iiasa/message_ix/pull/450]).

	Fix bug in years_active() to use the lifetime corresponding to the vintage year for which the active years are being retrieved (PR #456 [https://github.com/iiasa/message_ix/pull/456]).

	Add a PowerPoint document usable to generate the RES diagrams for the Westeros tutorials (PR #408 [https://github.com/iiasa/message_ix/pull/408]).

	Expand documentation Installation for installing GAMS under macOS (PR #460 [https://github.com/iiasa/message_ix/pull/460]).

	Add new Westeros tutorial on add-on technologies (PR #365 [https://github.com/iiasa/message_ix/pull/365]).

	Expand documentation of dynamic constraint parameters (PR #454 [https://github.com/iiasa/message_ix/pull/454]).

	Adjust message_ix.report to use genno [https://genno.readthedocs.io/en/latest/api.html#module-genno] / ixmp.report [https://docs.messageix.org/projects/ixmp/en/latest/reporting.html#module-ixmp.report] changes in ixmp PR #397 [https://github.com/iiasa/ixmp/pull/397] (PR #441 [https://github.com/iiasa/message_ix/pull/441]).

v3.2.0 (2021-01-24)

Migration notes

	Code that uses make_df() can be adjusted in one of two ways.
See the function documentation for details.
The function should be imported from the top level:

from message_ix import make_df

All changes

	PR #407 [https://github.com/iiasa/message_ix/pull/407]: Use report in tutorials; add util.tutorial for shorthand code used to streamline tutorials.

	PR #407 [https://github.com/iiasa/message_ix/pull/407]: Make Reporter a top-level class.

	PR #415 [https://github.com/iiasa/message_ix/pull/415]: Improve make_df() to generate empty, partially-, or fully-filled data frames with the correct columns for any MESSAGE or MACRO parameter.

	PR #415 [https://github.com/iiasa/message_ix/pull/415]: Make complete lists of .MESSAGE_ITEMS, .MACRO_ITEMS and their dimensions accessible through the Python API.

	PR #421 [https://github.com/iiasa/message_ix/pull/421]: Fix discounting from forward-looking to backward-looking and provide an explanation of the period structure and discounting in documentation of Years, periods, and time slices.

v3.1.0 (2020-08-28)

message_ix v3.1.0 coincides with ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] v3.1.0.

For citing message_ix, distinct digital object identifiers (DOIs) are available for every release from v3.1.0 onwards; see the user guidelines and notice for more information and how to cite.

All changes

	PR #367 [https://github.com/iiasa/message_ix/pull/367]: Add new westeros tutorial on share constraints.

	PR #366 [https://github.com/iiasa/message_ix/pull/366]: Add new Westeros tutorial on modeling fossil resource supply curves.

	PR #391 [https://github.com/iiasa/message_ix/pull/391], PR #392 [https://github.com/iiasa/message_ix/pull/392]: Add a documentation page on pre-requisite knowledge & skills; expand guidelines on Contributing to development.

	PR #389 [https://github.com/iiasa/message_ix/pull/389]: Fix a bug in pyam.concat() [https://pyam-iamc.readthedocs.io/en/stable/api/general.html#pyam.concat] using non-pyam objects.

	PR #286 [https://github.com/iiasa/message_ix/pull/286], PR #381 [https://github.com/iiasa/message_ix/pull/381], PR #389 [https://github.com/iiasa/message_ix/pull/389]: Improve add_horizon() to also set duration_period; add documentation of Years, periods, and time slices.

	PR #377 [https://github.com/iiasa/message_ix/pull/377]: Improve the rmessageix R package, tutorials, and expand documentation and installation instructions.

	PR #382 [https://github.com/iiasa/message_ix/pull/382]: Update discount factor from df_year to df_period in documentation of the objective function to match the GAMS formulation.

v3.0.0 (2020-06-07)

message_ix v3.0.0 coincides with ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] v3.0.0.

Migration notes

The generic storage formulation introduces new ixmp items (sets, parameters, variables, and equations) to the MESSAGE model scheme.
When loading a Scenario created with a version of message_ix older than 3.0.0, MESSAGE.initialize() will initialized these items (and leave them empty), using at most one call to commit().

See also the migration notes for ixmp 3.0.0 [https://docs.messageix.org/projects/ixmp/en/latest/whatsnew.html#v3-0-0-2020-06-05].

All changes

	PR #190 [https://github.com/iiasa/message_ix/pull/190]: Add generic mathematical formulation of technologies that store commodities, such as water and energy.

	PR #343 [https://github.com/iiasa/message_ix/pull/343], PR #345 [https://github.com/iiasa/message_ix/pull/345]: Accept MESSAGE_MACRO iteration control parameters through solve(); document how to tune these to avoid numerical issues.

	PR #340 [https://github.com/iiasa/message_ix/pull/340]: Allow cplex.opt to be used by message_ix from multiple processes.

	PR #328 [https://github.com/iiasa/message_ix/pull/328]: Expand automatic reporting of emissions prices and mapping sets; improve robustness of .Reporter.convert_pyam [https://genno.readthedocs.io/en/latest/compat-pyam.html#genno.compat.pyam.operator.add_as_pyam].

	PR #321 [https://github.com/iiasa/message_ix/pull/321]: Move Scenario.to_excel(), read_excel() to ixmp.Scenario [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.Scenario]; they continue to work with message_ix.Scenario.

	PR #323 [https://github.com/iiasa/message_ix/pull/323]: Add units, replace_vars arguments to Reporter.convert_pyam().

	PR #308 [https://github.com/iiasa/message_ix/pull/308]: Expand automatic reporting of add-on technologies.

	PR #313 [https://github.com/iiasa/message_ix/pull/313]: Include all tests in the message_ix package.

	PR #307 [https://github.com/iiasa/message_ix/pull/307]: Adjust to deprecations in ixmp 2.0.

	PR #223 [https://github.com/iiasa/message_ix/pull/223]: Add methods for parametrization and calibration of MACRO based on an existing MESSAGE Scenario.

v2.0.0 (2020-01-14)

message_ix v2.0.0 coincides with ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] v2.0.0.

Migration notes

Support for Python 2.7 is dropped as it has reached end-of-life, meaning no further releases will be made even to fix bugs.
See PEP-0373 [https://www.python.org/dev/peps/pep-0373/] and https://python3statement.org.
message_ix users must upgrade to Python 3.

Command-line interface (CLI). Use message-ix as the program for all command-line operations:

	message-ix copy-model replaces messageix-config.

	message-ix dl replaces messageix-dl.

	message-ix also provides all the features of the ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] CLI.

Configuration. ixmp adds a streamlined system for storing information about different platforms, backends, and databases that store Scenario data.
See the ixmp release notes [https://docs.messageix.org/projects/ixmp/en/latest/whatsnew.html] for migration notes.

All changes

	PR #285 [https://github.com/iiasa/message_ix/pull/285]: Drop support for Python 2.

	PR #284 [https://github.com/iiasa/message_ix/pull/284]: Add a suggested sequence/structure to how to run the Westeros tutorials.

	PR #281 [https://github.com/iiasa/message_ix/pull/281]: Test and improve logic of years_active() and vintage_and_active_years().

	PR #269 [https://github.com/iiasa/message_ix/pull/269]: Enforce year-indexed columns as integers.

	PR #256 [https://github.com/iiasa/message_ix/pull/256]: Update to use ixmp.config [https://docs.messageix.org/projects/ixmp/en/latest/api.html#ixmp.config] and improve CLI.

	PR #255 [https://github.com/iiasa/message_ix/pull/255]: Add message_ix.testing.nightly and message-ix nightly CLI command group for slow-running tests.

	PR #249 [https://github.com/iiasa/message_ix/pull/249], PR #259 [https://github.com/iiasa/message_ix/pull/259]: Build MESSAGE and MESSAGE_MACRO classes on ixmp model API; adjust Scenario.

	PR #235 [https://github.com/iiasa/message_ix/pull/235]: Add a reporting tutorial.

	PR #236 [https://github.com/iiasa/message_ix/pull/236], PR #242 [https://github.com/iiasa/message_ix/pull/242], PR #263 [https://github.com/iiasa/message_ix/pull/263]: Enhance reporting.

	PR #232 [https://github.com/iiasa/message_ix/pull/232]: Add Westeros tutorial for modelling seasonality, update existing tutorials.

	PR #276 [https://github.com/iiasa/message_ix/pull/276]: Improve add_year for bounds and code cleanup

v1.2.0 (2019-06-25)

MESSAGEix 1.2.0 adds an option to set the commodity balance to strict equality,
rather than a supply > demand inequality. It also improves the support for
models with non-equidistant years.

Other improvements include an experimental reporting module, support for CPLEX
solver options via solve(), and a reusable message_ix.testing
module.

Release 1.2.0 coincides with ixmp
release 0.2.0 [https://github.com/iiasa/ixmp/releases/tag/v0.2.0], which
provides full support for clone() across platforms (database
instances), e.g. from a remote database to a local HSQL database; as well as
other improvements. See the ixmp release notes for further details.

All changes

	PR #161 [https://github.com/iiasa/message_ix/pull/161]: A feature for adding new periods to a scenario.

	PR #205 [https://github.com/iiasa/message_ix/pull/205]: Implement required changes related to timeseries-support and cloning across platforms (see ixmp#142 [https://github.com/iiasa/ixmp/pull/142]).

	PR #196 [https://github.com/iiasa/message_ix/pull/196]: Improve testing by re-using ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] apparatus.

	PR #187 [https://github.com/iiasa/message_ix/pull/187]: Test for cumulative bound on emissions.

	PR #182 [https://github.com/iiasa/message_ix/pull/182]: Fix cross-platform cloning.

	PR #178 [https://github.com/iiasa/message_ix/pull/178]: Bugfix of the PRICE_EMISSION variable in models with non-equidistant period durations.

	PR #176 [https://github.com/iiasa/message_ix/pull/176]: Add message_ix.report module.

	PR #173 [https://github.com/iiasa/message_ix/pull/173]: The meth:~.Scenario.solve command now takes additional arguments when solving with CPLEX. The cplex.opt file is now generated on the fly during the solve command and removed after successfully solving.

	PR #172 [https://github.com/iiasa/message_ix/pull/172]: Add option to set COMMODITY_BALANCE to equality.

	PR #154 [https://github.com/iiasa/message_ix/pull/154]: Enable documentation build on ReadTheDocs.

	PR #138 [https://github.com/iiasa/message_ix/pull/138]: Update documentation and tutorials.

	PR #131 [https://github.com/iiasa/message_ix/pull/131]: Update clone function argument scen to scenario with planned deprecation of the former.

v1.1.0 (2018-11-21)

Migration notes

This patch introduces a few backwards-incompatible changes to database management.

Database Migration

If you see an error message like:

_ _
usr/local/lib/python2.7/site-packages/ixmp/core.py:81: in __init__
 self._jobj = java.ixmp.Platform("Python", dbprops)
_ _

self = <jpype._jclass.at.ac.iiasa.ixmp.Platform object at 0x7ff1a8e98410>
args = ('Python', '/tmp/kH07wz/test.properties')

 def _javaInit(self, *args):
 object.__init__(self)

 if len(args) == 1 and isinstance(args[0], tuple) \
 and args[0][0] is _SPECIAL_CONSTRUCTOR_KEY:
 self.__javaobject__ = args[0][1]
 else:
 self.__javaobject__ = self.__class__.__javaclass__.newClassInstance(
> *args)
E org.flywaydb.core.api.FlywayExceptionPyRaisable: org.flywaydb.core.api.FlywayException: Validate failed: Migration checksum mismatch for migration 1
E -> Applied to database : 1588531206
E -> Resolved locally : 822227094

Then you need to update your local database. There are two methods to do so:

	Delete it (you will lose all data and need to regenerate it). The default
location is ~/.local/ixmp/localdb/.

	Manually apply the underlying migrations. This is not particularly easy, but
allows you to save all your data. If you want help, feel free to get in
contact on the
listserv [https://groups.google.com/forum/#!forum/message_ix].

New Property File Layout

If you see an error message like:

usr/local/lib/python2.7/site-packages/jpype/_jclass.py:111: at.ac.iiasa.ixmp.exceptions.IxExceptionPyRaisable
---------------------------- Captured stdout setup -----------------------------
2018-11-13 08:15:17,410 ERROR at.ac.iiasa.ixmp.database.DbConfig:357 - missing property 'config.server.config' in /tmp/hhvE1o/test.properties
2018-11-13 08:15:17,412 ERROR at.ac.iiasa.ixmp.database.DbConfig:357 - missing property 'config.server.password' in /tmp/hhvE1o/test.properties
2018-11-13 08:15:17,412 ERROR at.ac.iiasa.ixmp.database.DbConfig:357 - missing property 'config.server.username' in /tmp/hhvE1o/test.properties
2018-11-13 08:15:17,413 ERROR at.ac.iiasa.ixmp.database.DbConfig:357 - missing property 'config.server.url' in /tmp/hhvE1o/test.properties
------------------------------ Captured log setup ------------------------------
core.py 80 INFO launching ixmp.Platform using config file at '/tmp/hhvE1o/test.properties'
_________________ ERROR at setup of test_add_spatial_multiple __________________

 @pytest.fixture(scope="session")
 def test_mp():
 test_props = create_local_testdb()

 # start jvm
 ixmp.start_jvm()

 # launch Platform and connect to testdb (reconnect if closed)
> mp = ixmp.Platform(test_props)

Then you need to update your property configuration file. The old file looks like:

config.name = message_ix_test_db@local
jdbc.driver.1 = org.hsqldb.jdbcDriver
jdbc.url.1 = jdbc:hsqldb:file:/path/to/database
jdbc.user.1 = ixmp
jdbc.pwd.1 = ixmp
jdbc.driver.2 = org.hsqldb.jdbcDriver
jdbc.url.2 = jdbc:hsqldb:file:/path/to/database
jdbc.user.2 = ixmp
jdbc.pwd.2 = ixmp

The new file should look like:

config.name = message_ix_test_db@local
jdbc.driver = org.hsqldb.jdbcDriver
jdbc.url = jdbc:hsqldb:file:/path/to/database
jdbc.user = ixmp
jdbc.pwd = ixmp

All changes

	PR #202 [https://github.com/iiasa/message_ix/pull/202]: Added the “Development rule of thumb” section from the wiki and the Tutorial style guide to the Contributor guidelines. Tweaked some formatting to improve readibility.

	PR #113 [https://github.com/iiasa/message_ix/pull/113]: Upgrading to MESSAGEix 1.1: improved representation of renewables, share constraints, etc.

	PR #109 [https://github.com/iiasa/message_ix/pull/109]: MACRO module added for initializing models to be solved with MACRO. Added scenario-based CI on circleci.

	PR #99 [https://github.com/iiasa/message_ix/pull/99]: Fixing an error in the compuation of the auxiliary GAMS reporting variable PRICE_EMISSION.

	PR #89 [https://github.com/iiasa/message_ix/pull/89]: Fully implementing system reliability and flexibity considerations (cf. Sullivan).

	PR #88 [https://github.com/iiasa/message_ix/pull/88]: Reformulated capacity maintainance constraint to ensure that newly installed capacity cannot be decommissioned within the same model period as it is built in.

	PR #84 [https://github.com/iiasa/message_ix/pull/84]: message_ix.Scenario.vintage_active_years() now limits active years to those after the first model year or the years of a certain technology vintage.

	PR #82 [https://github.com/iiasa/message_ix/pull/82]: Introducing “add-on technologies” for mitigation options, etc.

	PR #81 [https://github.com/iiasa/message_ix/pull/81]: Share constraints by mode added.

	PR #80 [https://github.com/iiasa/message_ix/pull/80]: Share constraints by commodity/level added.

	PR #78 [https://github.com/iiasa/message_ix/pull/78]: Bugfix: message_ix.Scenario.solve() uses ‘MESSAGE’ by default, but can be provided other model names.

	PR #77 [https://github.com/iiasa/message_ix/pull/77]: rename() function can optionally keep old values in the model (i.e., copy vs. copy-with-replace).

	PR #74 [https://github.com/iiasa/message_ix/pull/74]: Activity upper and lower bounds can now be applied to all modes of a technology.

	PR #67 [https://github.com/iiasa/message_ix/pull/67]: Use of advanced basis in cplex.opt turned off by default to avoid conflicts with barrier method.

	PR #65 [https://github.com/iiasa/message_ix/pull/65]: Bugfix for downloading tutorials. Now downloads current installed version by default.

	PR #60 [https://github.com/iiasa/message_ix/pull/60]: Add basic ability to write and read model input to/from Excel.

	PR #59 [https://github.com/iiasa/message_ix/pull/59]: Added MacOSX CI support.

 User guidelines and notice

User guidelines and notice

We ask that you take the following four actions whenever you:

	use the MESSAGEix framework, ix modeling platform, or any model(s) you have built using these tools

	to produce any scientific publication, technical report, website, or other publicly-available material.

The aim of this request is to ensure good scientific practice and collaborative development of the platform.

1. Understand the code license

Use the most recent version of MESSAGEix from the Github repository.
Specify clearly which version (e.g. release tag, such as v1.1.0, or commit hash, such as 26cc08f) you have used, and whether you have made any modifications to the code.
To retrieve this information from the command line, use git describe --tags, which will show you the version, number of commits since then, and the hash of your current commit.
Note that the commit hash does not include the preceeding -g.

Read and understand the file LICENSE; in particular, clause 7 (“Disclaimer of Warranty”), which states:

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

2. Cite the scientific publication

Cite, at minimum, the following manuscript:

Daniel Huppmann, Matthew Gidden, Oliver Fricko, Peter Kolp, Clara Orthofer, Michael Pimmer, Nikolay Kushin, Adriano Vinca, Alessio Mastrucci, Keywan Riahi, and Volker Krey.

“The MESSAGEix Integrated Assessment Model and the ix modeling platform”.

Environmental Modelling & Software 112:143-156, 2019.

doi: 10.1016/j.envsoft.2018.11.012 [https://doi.org/10.1016/j.envsoft.2018.11.012]

electronic pre-print available at pure.iiasa.ac.at/15157/ [https://pure.iiasa.ac.at/15157/].

You should also cite the software project itself. The data for citing both the manuscript and the software can be found in the citation file CITATION.cff.
You can use the official cff tools [https://github.com/citation-file-format/citation-file-format#tools-to-work-with-citationcff-files-wrench] to export the data to BibTeX and other formats.

In addition, you may:

	Cite the code via Zenodo.
The DOI 10.5281/zenodo.4005684 [https://doi.org/10.5281/zenodo.4005684] represents all versions of the message_ix code, and will always resolve to the latest version.
At that page, you can also choose a different DOI in order to cite one specific version; for instance, 10.5281/zenodo.4005685 [https://doi.org/10.5281/zenodo.4005685] to cite v3.1.0.
Zenodo also provides citation export in BibTeX and other formats.

	Include a link, e.g. in a footnote, to the online documentation at https://docs.messageix.org.

3. Use the naming convention for new model instances

For any new model instance under the MESSAGEix framework, choose a name of
the form “MESSAGEix [xxx]” or “MESSAGEix-[xxx]”, where [xxx] is replaced by:

	the institution or organization developing the model,

	the name of a country/region represented in the model, or

	a similar identifier.

For example, the national model for South Africa developed by Orthofer et al. [1] is named “MESSAGEix South Africa”.

Ensure there is no naming conflict with existing versions of the MESSAGEix model family.
When in doubt, contact the IIASA ECE Program at <message_ix@iiasa.ac.at> for a list of existing model instances.

4. Give notice of publication

E-mail <message_ix@iiasa.ac.at> with notice of any new or pending publication.

Optional: Add your tool, project or publication to this documentation

To make your usage of MESSAGEix visible, add it to the Usage in publications, projects, and tools page of this documentation, in the Tools, Projects or Publications section.
See Sharing publications, projects, and tools for details.

References

[1] Clara Orthofer, Daniel Huppmann, and Volker Krey (2019).

“South Africa’s shale gas resources - chance or challenge?”

Frontiers in Energy Research 7:20. doi: 10.3389/fenrg.2019.00020 [https://doi.org/10.3389/fenrg.2019.00020]

 Contributing to development

Contributing to development

We welcome contributions to the code base and development of new features for the MESSAGEix framework.
This page contains guidelines for making such contributions.
Each section requires some of the listed prerequisite knowledge and skills; use the links there to external resources about git, Github, Python, etc. to ensure you are able to understand and complete the steps.

On this page:

	File issues for bugs and enhancements

	Contribute code via Github PRs

	1. Choose a repository

	2. Fork, branch, and open a pull request

	3. Ensure checks pass

	4. Review

	5. Merge

	Code style

	Documentation

	Manage issues and pull requests

On separate pages:

	Versions and releases

	Release procedure

	Developing tutorials

	Contributor License Agreement

	Recording video documentation

File issues for bugs and enhancements

We use Github issues for several purposes:

	Ask and answer questions about intended behaviour or issues running the framework or related models.

	Report bugs, i.e. unintended or undocumented behaviour.

	Request changes to exiting behaviour.

	Request specific enhancements and new features, both urgent and long-term/low-priority.

	Discuss and design of other improvements.

Please search through open and closed issues for both the message_ix [https://github.com/iiasa/message_ix/issues?q=is:issue] and ixmp [https://github.com/iiasa/ixmp/issues?q=is:issue] repositories.
Review any related issues.
Then, if your issue is not found, open a new one [https://github.com/iiasa/message_ix/issues/new].

Contribute code via Github PRs

1. Choose a repository

Decide which part of the MESSAGEix software stack is the appropriate location for your code:

	ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp]
	Contributions not specific to MESSAGEix model framework, e.g. that could be used for other, non-MESSAGE models.

	ixmp_source [https://github.com/iiasa/ixmp_source] (closed source)
	Java / JDBC backend for ixmp.

	message_ix
	Contributions not specific to any particular MESSAGEix model instance.
Additions to message_ix should be usable in any MESSAGE-scheme model.

	message_ix_models [https://docs.messageix.org/projects/models/en/latest/index.html#module-message_ix_models]
	Contributions to the MESSAGE-GLOBIOM family of models, including the global model, and its documentation.

2. Fork, branch, and open a pull request

Register a Github account, if you do not already have one.
Fork the chosen repository to your own Github account.
Create a branch with an appropriate name:

	all-lower-case-with-hyphens —underscores (_) are slower to type; don’t use them.

	issue/1234 if you are addressing a specific issue.

	feature/do-something if you are adding a new feature.

	Don’t use the main branch in your fork for a PR.
This makes it hard for others to check out and play with your code.

Open a PR (e.g. on message_ix [https://github.com/iiasa/message_ix/pulls]) to merge your code into the main branch.
The message_ix and ixmp repositories each have a template for the text of the PR that is designed to help you write a clear description.
It includes:

	A title and one-sentence summary of the change.
This is like the abstract of a publication: it should help a developer/reviewer/user quickly learn what the PR is about.

	Confirm that unit or integration tests have been added or revised to cover the changed code, and that the tests pass (see below).

	Confirm that documentation of the API and its usage is added or revised as necessary.

	Add a line to RELEASE_NOTES.rst describing the changes (use the same title or one-sentence summary as above) and linking to the PR.

Optionally:

	Assign yourself and anyone else who will actually commit changes to the PR branch, or be actively involved in discussing/designing the code.

	Include a longer description of the design, or any changes whose purpose is not clear by inspecting code.

	Put “WIP:” or the construction sign Unicode character (🚧) at the start of the PR title to indicate “work in progress” while you continue to add commits; or use GitHub’s ‘draft’ pull requests [https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests#draft-pull-requests] feature.
This is good development practice: it ensures the automatic checks pass as you add to the code on your branch.

3. Ensure checks pass

MESSAGEix has several kinds of automatic, or continuous integration, checks:

	The CLA Assistant [https://github.com/cla-assistant/] ensures you have signed the Contributor License Agreement (follow link for text).
All contributors are required to sign the CLA before any pull request can be reviewed.
This ensures that all future users can benefit from your contribution, and that your contributions do not infringe on anyone else’s rights.

	GitHub Actions is used to run several workflows.
These are defined by YAML files in .github/workflows/:

	pytest
	This workflow runs all Python and R tests; on Linux, macOS, and Windows; and for multiple versions of Python.

It also:

	Checks that the documentation can be built without fatal errors.

	Checks that the code style is applied.

	publish
	This workflow checks that the Python package (for upload to PyPI) can be built cleanly and without errors.

The package is not actually uploaded, unless this workflow is started from a release candidate tag or on the creation of a new release on GitHub.

	nightly
	These tests run daily at 05:00 UTC.
They download a particular package of full-scale, MESSAGEix-GLOBIOM global model scenarios from IIASA servers.
Each scenario’s outputs are compared to an expected value listed in message_ix/tests/data/scenarios.yaml.
PRs that touch the GAMS code may cause the these objective function values to change; the values must be updated as part of such PRs.
See the comments in the file for how to temporarily enable these checks for every commit on a PR branch.

	anaconda, miniconda
	These workflows check that the package can be installed from conda-forge using Anaconda and Miniconda, respectively, on Windows only.

Resolve any non-passing checks—seeking help if needed.

If your PR updates the documentation, the lint check will confirm that it can be built.
However, you should also manually build and view the HTML documentation on your machine to confirm that the generated HTML is as expected, and address any warnings generated by Sphinx during the build phase.
See doc/README.rst.

4. Review

Using the GitHub sidebar on your PR, request a review from another MESSAGEix contributor.
GitHub suggests reviewers; optionally, contact the IIASA ECE Program to ask who should review your code.

	If you want them to follow along with progress, tag them in the PR description, like “FYI @Alice @Bob”.

	Only formally request review once the code is ready to review.
Doing this sends e-mail and other notifications (e.g. in Slack, the “Pull Reminders” bot sends notices every day).
If the code is not yet complete and ready for review, these notifications are noise.

Address any comments raised by the reviewer.

5. Merge

GitHub provides three ways to incorporate a pull request [https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-request-merges]: merge, rebase, and squash.
Current practice for the ixmp, message_ix, and message_data repositories is:

	Use squash and merge…

	if the commit history for the PR is “messy”, e.g. there are many merge commits from other branches, or the author did not write well-formatted commit messages (see “Code style”, below).

	if the PR is very old, i.e. it starts at an old commit on main. However, it is better to rebase the PR branch on the HEAD of main and then use a merge commit (below).

	Use rebase and merge…

	if the PR is only one or a few commits that are obviously related.

	if the PR does not involve user-facing changes, i.e. does not need to be linked from the release notes.

	Use merge pull request (also written “create a merge commit”) in all other cases.

PR branches should be rebased on the HEAD of main before merging.
This is because some git-based tools will display commits from main and the PR branch interleaved if their dates and times are mixed, which makes it harder to read the commit history.
Rebasing avoids this problem by ensuring each PR’s commits are displayed together & in sequence.

Code style

	For both commit messages and pull request (PR) titles, memorize and use the “7 rules of a great Git commit message” [https://chris.beams.io/posts/git-commit/#seven-rules].

	Python code:

	Follow the PEP 8 naming conventions [https://www.python.org/dev/peps/pep-0008/#naming-conventions].

	Apply black [https://black.readthedocs.io] code formatting.

	Use ruff [https://beta.ruff.rs/docs] to check code quality.
In particular, through pyproject.toml, message_ix uses the following rule sets to ensure:

	“F” [https://beta.ruff.rs/docs/rules/#pyflakes-f]: code is free of basic errors, equivalent to Pyflakes or flake8 [https://flake8.pycqa.org].

	“E”, “W” [https://beta.ruff.rs/docs/rules/#pycodestyle-e-w]: code conforms to PEP 8 [https://www.python.org/dev/peps/pep-0008], equivalent to using pycodestyle.

	“I” [https://beta.ruff.rs/docs/rules/#isort-i]: import statements are sorted in a consistent way, equivalent to isort [https://pypi.org/project/isort/].

	“C90” [https://beta.ruff.rs/docs/rules/#mccabe-c90]: the McCabe complexity of code is below a fixed threshold, equivalent to using mccabe [https://pypi.org/project/mccabe/] via flake8.

	Add type hints to new or changed functions, methods, and global variables, and check these using the mypy [https://mypy.readthedocs.io] static type checker.

To simplify the use of these tools:

	Black, ruff, and mypy can each be configured to run automatically within your code editor with an extension, plugin, or script (see their respective documentation for links and details).
These tools help apply the code style every time a file is saved, or even as you type.

	The source repository contains configuration for pre-commit [https://pre-commit.com], a tool that invokes multiple actions via git hooks [https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks].
This runs all of the above checks every time you do a git commit.
To use this tool, install pre-commit and install it in your local checkout of the Git repository:

pip install pre-commit
pre-commit install -f

Run the tools on all files to confirm they are working
pre-commit run --all-files

To force mypy type checking to use packages from an existing Python virtual environment [https://docs.python.org/3/library/venv.html] on your system (for instance, with development code), set the PRE_COMMIT_MYPY_VENV environment variable to the path to that environment.

	The “Code quality” job in the “pytest” workflow described above applies exactly the same checks for PR branches.
PRs that fail the checks must be corrected before they can be merged.

	GAMS code:

	Wrap lines at 121 characters, except for inline documentation (see above).

	R code: follow the style of the existing code base.

	Jupyter notebooks (.ipynb): see Developing tutorials.

	Other (file names, CLI, etc.): follow the style of the existing code base, e.g.:

	Use lower-case file names and extensions.

	Except for Python source files, prefer hyphens to underscores.

Documentation

	Write documentation in ReStructuredText formats for:

	Python docstrings.

	Documentation pages, doc/*.rst.

	Inline documentation in message_ix/model/*.gms files.

For (2) and (3), start each sentence on a new line, and do not hard-wrap within sentences.
For (1), wrap at the same 88 characters as black enforces for code.

	Ensure Sphinx does not give warnings about ReST syntax for new or modified documentation.

	Use sphinx.ext.intersphinx [https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html#module-sphinx.ext.intersphinx] (click for docs) to create cross-links within one project’s documentation, or across projects.

	Understand the use of the ~ and . characters to resolve references across the project. See Cross-referencing syntax [https://www.sphinx-doc.org/en/master/usage/referencing.html#xref-syntax] in the Sphinx docs.

	See example usage in existing code.

	Check that intersphinx links are correctly resolved, by building the docs and attempting to click new or modified links.

	Write docstrings in the numpydoc [https://numpydoc.readthedocs.io/en/latest/format.html] style.
This implies also PEP 257 [https://peps.python.org/pep-0257/]; see in particular the format for multi-line docstrings [https://peps.python.org/pep-0257/#multi-line-docstrings].

Use single backticks to refer to function arguments, and asterisks for italics:

def func(foo: str, bar: str) -> float:
 """Perform some action.

 If `foo` and `bar` have the same value, ``42.1`` is returned. *Nice!*
 """

References:

	reStructuredText Primer [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html] in the Sphinx docs.

	https://docutils.sourceforge.io/docs/user/rst/quickref.html

Manage issues and pull requests

	Assign an issue or PRs to the person(s) who must take the next action towards completing it.
For example:

	Comment on the issue to provide information/decisions needed to move forward.

	Implement the requested changes in code.

This might be different from the person who opened the issue/PR.

	Use the GitHub auto-linking feature to make clear the connection between related issues and PRs.

	Look at the labels, milestones, and projects in the right sidebar.
Associate the issue with the correct one(s).

	Follow-up on old issues (ones with no activity for a month or more):

	Ask (in a new comment, on Slack, in person) the assignee or last commenter what the status is.

	Close or re-assign, with a comment that describes your reasoning.

 Versions and releases

Versions and releases

	We use semantic versioning [https://semver.org].

To paraphrase: a major version increment (e.g. from 3.5 to 4.0) means there are backwards-incompatible changes to the API or functionality (e.g. code written for version 3.5 may no longer work with 4.0).
Major releases always include migration notes in What’s New to alert users to such changes and suggest how to adjust their code.
A minor version increment may fix bugs or add new features, but does not change existing functionality.
Code written for e.g. version 3.5 will continue to work with 3.6.

	Releases of ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp] and message_ix are generally made at the same time, and the version numbers kept synchronized.

	Each version of message_ix has a minimum required version of ixmp [https://docs.messageix.org/projects/ixmp/en/latest/api.html#module-ixmp].

	We keep at least two active milestones on each of the message_ix and ixmp repositories:

	The next minor version. e.g. if the latest release was 3.5, the next minor release/milestone is 3.6.

	The next major version. e.g. 4.0.

	The milestones are closed at the time a new version is released.
If a major release (e.g. 4.0) is made without the preceding minor release (e.g. 3.6), both are closed together.

	Every issue and PR should be assigned to a milestone to record the decision/intent to release it at a certain time.

	New releases are made by ECE Program staff using the Release procedure, and appear on Github, PyPI, and conda-forge.

	There is no fixed release schedule, but new releases are generally made twice each year, sometimes more often.

 Release procedure

Release procedure

	Preliminaries

	Before releasing

	Releasing

Preliminaries

	The procedure applies to both ixmp and message_ix.

	The ixmp release must be processed before message_ix.

	The person (or persons) processing the release needs the following authorizations:

	Maintainer or Owner on both Github repositories.

	Maintainer on the
conda-forge/ixmp-feedstock [https://github.com/conda-forge/ixmp-feedstock]
and
message-ix-feedstock [https://github.com/conda-forge/message-ix-feedstock]
repositories.
This means your Github account is listed in each of them in the recipe/meta.yaml, under the key recipe-maintainers:. For an easy way of achieving that, see the conda-forge docs [https://conda-forge.org/docs/maintainer/updating_pkgs.html#updating-the-maintainer-list].

	In the below:

	<version> stands for the full version number, e.g. 1.2.0.
Always include all three parts: major, minor, and patch, i.e. 1.2.0 and never 1.2.
Look very carefully to see when v<version> versus <version> should be used.

	<upstream> stands for your local name for the Git remote that is the IIASA Github repository.

Before releasing

Update these instructions. Keep them current with actual practice.

Handle deprecations. You can find these by searching the code base for “deprecat”.

A deprecation always involves two versions: (1) the version in which the item “is [marked as] deprecated”, and (2) the version in which the item is removed.
These must always be separated by at least one major version.
For instance, an item marked as deprecated in v2.1 can be removed as of v3.0; an item marked as deprecated in v3.0 can be removed in v4.0, or later, e.g. in v5.0.

	Mark any new deprecations.
Explicitly state the version when the removal is targeted, so that users can adjust their code.

	Remove any items targeted for removal in this release.

Note

This can be done at any point, and should be done before the release prep begins.
For instance, a feature marked as deprecated in v2.0 should be removed before 3.0 is released.
But may also be removed from the main branch immediately after 2.0.0 is released.
This is preferred, because it forces tutorials, user code, etc. to stay ahead of deprecations.

	(message_ix only) Edit pyproject.toml, updating the list dependencies in the project section for ixmp as necessary.

Each version of message_ix depends on a minimum version of ixmp.
message_ix must not depend on or use deprecated features of ixmp; it should remain compatible with earlier versions of ixmp, where possible.

Check continuous integration.
Any failures in (4) or (5) must be corrected before releasing.

	Check https://github.com/iiasa/message_ix/actions/ (or equivalent for ixmp [https://github.com/iiasa/ixmp/actions/]) to ensure that the push and scheduled builds are passing.

	Check https://readthedocs.com/projects/iiasa-energy-program-message-ix/builds/ (or ixmp [https://readthedocs.com/projects/iiasa-energy-program-ixmp/builds/]) to ensure that the docs build is passing.

If necessary, make and merge ≥1 PR(s) to address (1–5).

Releasing

	Create a new branch:

$ git checkout -b release/X.Y.Z

	Edit RELEASE_NOTES.rst:

	Comment the heading “Next release”, and insert below it:

	A commented “All changes” sub-heading (---)

	A ReST anchor with the version number

	Another heading (===) below it, with the version number and date

	Add a short text description summarizing the release

	If necessary, add a subsection “Migration notes” explaining to users how to adjust to changes in the release

For example, the top of the file should look like:

Before editing

Next release
============

All changes

- Description of a change (:pull:`9999`).

After editing

.. Next release
.. ============

.. All changes
.. -----------

.. _v99.98.0:

v99.98.0 (2035-10-12)
=====================

Here is a description of the release.

Migration notes

Here is guidance on how to adjust to the release.

All changes

- Description of a change (:pull:`9999`).

Build the docs locally to ensure any ReST markup in these additions renders correctly.

	Make a commit with a message like “Mark v<version> in release notes”.

	Tag the release candidate version, i.e. with a rcN suffix where N is a natural number, and push:

$ git tag vX.Y.ZrcN
$ git push --tags <upstream> release/X.Y.Z

	Open a PR with the title “Release vX.Y.Z” using this branch.
Check:

	at https://github.com/iiasa/message_ix/actions/workflows/publish.yaml (or ixmp [https://github.com/iiasa/ixmp/actions/workflows/publish.yaml]) that the workflow completes: the package builds successfully and is published to PyPI.

	at https://pypi.org/project/message-ix/ (or ixmp [https://pypi.org/project/ixmp/]) that:

	The package can be downloaded, installed and run.

	The README is rendered correctly.

Address any warnings or errors that appear, if necessary through ≥1 new commit(s).
Then continue from step (4), incrementing the release candidate number, e.g. from rc1 to rc2.

	Merge the PR using the ‘rebase and merge’ method.

	(optional) Tag the release itself and push:

$ git tag v<version>
$ git push --tags <upstream> main

This step (but not step (4)) can be performed directly on GitHub; see (8), next.

	Visit https://github.com/iiasa/message-ix/releases (or ixmp [https://github.com/iiasa/ixmp/releases]) and mark the new release: either using the pushed tag from (7), or by creating the tag and release simultaneously.

For the description, provide a link to the section in the “What’s New” page of the documentation that corresponds to the new release, using the anchor added in (3), above.
For example:

See [“What's New”](https://docs.messageix.org/en/stable/whatsnew.html#v99-98-0) in the documentation for a list of all changes.

	Check at https://github.com/iiasa/message_ix/actions/workflows/publish.yaml (or ixmp [https://github.com/iiasa/ixmp/actions/workflows/publish.yaml]) and https://pypi.org/project/message-ix/ (or ixmp [https://pypi.org/project/ixmp/]) that the distributions are published.

	Update on conda-forge.
A PR should automatically be opened by a bot after the GitHub release (sometimes this takes from 30 minutes to several hours).

	Confirm that any new dependencies are added.
The minimum versions in meta.yaml should match the versions in pyproject.toml.

	Ensure that tests pass and complete any other checklist items.

	Merge the PR.

	Check that the new package version appears on conda-forge. This may take up to several hours.

	Announce the release(s) on the GitHub Discussions pages and/or on Twitter.
Copy the text from the What’s New page of the built documentation.

 Developing tutorials

Developing tutorials

Developers and users of the MESSAGEix framework are welcome to contribute tutorials, according to the following guidelines.
Per the license and CLA, tutorials will become part of the message_ix test suite and will be publicly available.

Developers must ensure new features (including message_ix.tools submodules) are fully documented.
This can be done via the API documentation (this site) and, optionally, a tutorial.
These have complementary purposes:

	The API documentation (built using Sphinx and ReadTheDocs) must completely, but succinctly, describe the arguments and behaviour of every class and method in the code.

	Tutorials serve as structured learning exercises for the classroom or self-study.
The intended learning outcome for each tutorial is that students understand how the model framework API may be used for scientific research, and can begin to implement their own models or model changes.

Code and writing style

	Python and R code in notebooks: follow all points of the Code style for message_ix.

	Only commit ‘bare’ Jupyter notebooks: clear all cell output before committing.
Notebooks will be run and rendered when the documentation is generated.

	Add a line to message_ix/tests/test_tutorials.py, so that the parametrized test function runs the tutorial (as noted at PR #196 [https://github.com/iiasa/message_ix/pull/196]).

	Optionally, use Jupyter notebook slide-show features so that the tutorial can be viewed as a presentation.

	When relevant, provide links to publications or sources that provide greater detail for the methodology, data, or other packages used.

	Providing the mathematical formulation in the tutorial itself is optional.

	Framework specific variables and parameters or functions must be in italic.

	Relevant figures, tables, or diagrams should be added to the tutorial if these can help users to understand concepts.

	Place rendered versions of graphics in a directory with the tutorial (see Location below).
Use SVG, PNG, JPG, or other web-ready formats.

Structure

Generally, a tutorial should have the following elements or sections.

	Tutorial introduction:

	The general overview of tutorial.

	The intended learning outcome.

	An explanation of which features are covered.

	Reference and provide links to any tutorials that are interlinked or part of a series.

	Description of individual steps:

	A brief explanation of the step.

	A link to any relevant mathematical documentation.

	Modeling results and visualizations:

	Model outputs and post-processing calculations in tutorials should demonstrate usage of the message_ix.report module.

	Plots to depict results should use pyam [https://github.com/IAMconsortium/pyam/].

	Include a brief discussion of insights from the results, in line with the learning objectives.

	Exercises: include self-test questions, small activities, and exercises at the end of a tutorial so that users (and instructors, if any) can check their learning.

Location

Place notebooks in an appropriate location:

	tutorial/name.ipynb`
	Stand-alone tutorial.

	tutorial/example/example_baseline.ipynb
	Group of tutorials named “example.”
Each notebook’s file name begins with the group name, followed by a name
beginning with underscores.
The group name can refer to a specific RES shared across multiple tutorials.
Some example names include:

<group>_baseline.ipynb

<group>_basic.ipynb # Basic modeling features, e.g.:
<group>_emmission_bounds.ipynb
<group>_emission_taxes.ipynb
<group>_fossil_resources.ipynb

<group>_adv.ipynb # Advanced modeling features, e.g.:
<group>_addon_technologies.ipynb
<group>_share_constraints.ipynb

<group>_renewables.ipynb # Features related to renewable energy, e.g.:
<group>_firm_capacity.ipynb
<group>_flexible_generation.ipynb
<group>_renewable_resources.ipynb

 Contributor License Agreement

 Included from CONTRIBUTOR_LICENSE.rst:

Contributor License Agreement

Summary and scope

It may seem self-evident that contributing to a project distributed under an open-source license is an implicit permission to anyone for using the contributed code.
However, a formal Contributor License Agreements (CLA) makes contribution terms explicit and provides the project maintainers a record of your agreement to those terms.

A wide range of terms exist in other CLAs, including waiver of moral rights, consequential damages waiver, as-is disclaimer, etc. For this project, we follow the more bare-boned GitHub CLA, which focuses on the three most important clauses: copyright, patent, and source of contribution.

In short, by signing this Contributor License Agreement, you confirm that:

	Anyone can use your contributions anywhere, for free, forever.

	Your contributions do not infringe on anyone else’s rights.

Definition of terms

The following terms are used throughout this agreement:

	You - the person or legal entity including its affiliates asked
to accept this agreement. An affiliate is any entity that controls
or is controlled by the legal entity, or is under common control with it.

	Project - the repositories message_ix and ixmp, and
any derived repositories, projects, or software/code packages.

	Contribution - any type of work that is submitted to a Project,
including any modifications or additions to existing work.

	Submitted - conveyed to a Project via a pull request, commit, issue,
or any form of electronic, written, or verbal communication with GitHub,
contributors or maintainers.

1. Grant of Copyright License

Subject to the terms and conditions of this agreement, You grant to
the Projects’ maintainers, contributors and users a perpetual, worldwide,
unlimited in scope, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to, in particular without being limited to,
reproduce, prepare derivative works of, publicly display, make available,
sublicense, and distribute Your contributions and such derivative works
in whole or in part. Except for this license, You reserve all moral rights,
title, and interest in your contributions.

2. Grant of Patent License

Subject to the terms and conditions of this agreement, You grant to
the Projects’ maintainers, contributors and users a perpetual, worldwide,
unlimited in scope, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use,
offer to sell, sell, import, and otherwise transfer your contributions, in
whole or in part, where such license applies only to those patent claims
licensable by you that are necessarily infringed by your contribution or
by combination of your contribution with the project
to which this contribution was submitted.

If any entity institutes patent litigation - including cross-claim or
counterclaim in a lawsuit - against You alleging that your contribution or
any project it was submitted to constitutes or is responsible for direct or
contributory patent infringement, then any patent licenses granted to that entity
under this agreement shall terminate as of the date such litigation is filed.

3. Source of Contribution

Your contribution is either your original creation or based upon previous work
that, to the best of your knowledge, is covered under an appropriate open
source license. You assure that you are legally entitled to submit your
contribution and grant the above license, or you have clearly identified the
source of the contribution and any license or other restriction (like related
patents, trademarks, and license agreements) of which you are personally aware.
If your employer(s) or employee(s) have rights to intellectual property that
you create, you represent that you have received permission to make the
contributions on behalf of that employer/employee, or that
your employer/employee has waived such rights for your contributions.

Should the licensor be held responsible for any violation of intellectual
property right in relation to your contribution, you shall be fully liable
for damages that may arise.

Reference and License

This Contributor License Agreement and the introductory text is adapted from
the GitHub Contributor License Agreement [https://cla.github.com/agreement], Version 298f3afd updated August 9, 2017.
GitHub granted a CC-BY-4.0 License [https://creativecommons.org/licenses/by/4.0/] to IIASA to use and modify the text of the CLA.

 Recording video documentation

Recording video documentation

This page describes how to prepare message_ix documentation in video format.

	Installation of the software

	Recording

	Scripts and subtitles

	Editing

Scripts for current videos, each on its own page:

	Video script: Installation

Installation of the software

We use free and open source software so that production of the videos (like the documentation and the software itself) can be done by anyone.

	OBS Studio [https://obsproject.com] for screen recording.

	Shotcut [https://shotcut.org] or ffmpeg [https://ffmpeg.org/] for editing.

Compare existing examples:

	http://software.ece.iiasa.ac.at/ixmp-server/tutorials.html —tutorials for the Scenario Explorer web interface.

Recording

Since recording a video tutorial in one cut without making any mistakes can be very difficult, it is advised to pause or stop the recording in between.
The recording snippets can then be easily concat with one of the above editing software.

	General rules:
	
	Avoid filler words (“okay”, “um”, etc.).
Instead, use silence to separate sentences and sections.

Scripts and subtitles

The folder containing this file (doc/source/video/) also holds scripts (in .rst format) and example subtitle files (in .srt) format for videos already recorded.

	If adding a new video, also add the script and subtitles.
This is so the script can be modified and re-read in order to update the video with minimal effort.

	Like a screenplay, include both the words spoken and the actions performed on screen, in the intended order.

	General rules:
	
	Do not mention specific dates or events.

Editing

As the video tutorials should be properly IIASA-branded one need to follow the “General video guidelines” [https://iiasahub.sharepoint.com/:w:/r/sites/com/_layouts/15/Doc.aspx?sourcedoc=%7B674376E4-F94C-4C8B-967F-CF1238E6A4B7%7D&file=Video%20Guidelines.docx&action=default&mobileredirect=true&DefaultItemOpen=1].
The following examples will help to concat the intros and outros to the recording, and possible recording snippets, if the video wasn’t recorded in one cut.

Concat videos via ffmpeg

Create a .txt file, e.g. to_concat.txt.
In this file, add “file” and the path to each of the video files you want to concat in “’’”.
The first path is to the video, which will be shown first:

file '~\video_1.mp4'
file '~\video_2.mp4'
file '~\video_3.mp4'

The following concats all videos listed in to_concat.txt and safe them into a new video concat.mp4:

$ ffmpeg -safe 0 -f concat -i ~\to_concat -c copy concat.mp4

Note

Only videos in the same format can be concated.

Add textbox via ffmpeg

In some cases it is needed to add a title or a note to the video, e.g. title.png.
This image can be overlaid during a certain time onto the video [1]:

$ ffmpeg -i concat.mp4 -i ~\titel.png -filter_complex "[0:v][1:v] overlay=25:25:enable='between(t,0,20)'" -pix_fmt yuv420p -c:a copy concat-w-title.mp4

[1]
For extensive information, please have a e.g. a look here [https://video.stackexchange.com/questions/12105/add-an-image-overlay-in-front-of-video-using-ffmpeg].

 Video script: Installation

Video script: Installation

Introduction

Note

Use a totally fresh install of Anaconda.
This includes removing conda-forge from the channels list, so there is no warning message in Step 6.

Open the install documentation at https://docs.messageix.org.
Open https://github.com/iiasa/message_ix in a separate tab, for later.

Hello everybody and welcome to this video tutorial on the installation of MESSAGEix through Anaconda on Windows.

You can also find on the Installation page of the MESSAGEix documentation at docs dot messageix dot org, as it is shown here on the right side.
It is also linked in the description below.
While you are there, make sure to check the prerequisite knowledge and skills to use MESSAGEix, as this will not be covered in our tutorials.

That being said, let’s jump straight into installing MESSAGEix through Anaconda.
At this point, we have already completed Steps 1 through 3, to install GAMS and add its PATH environment variable on the system.
We have also completed Step 4, installing Anaconda using the instructions linked from the page.
If you haven’t completed these Steps 1 through 4 yet, you should read the documentation and instructions for those steps, complete them, and then come back to this video.

We begin with Step 5, opening the Anaconda Prompt from the Start Menu.

Note

Do this.

In Step 6, we will first make sure that “conda forge” is used as the default channel to download and install packages, including message_ix and other packages that it requires.
Secondly, we set the channel priority to ‘strict’.
This ensures that conda will select the latest version of message_ix from the “noarch” channel and ignore much older packages in OS-specific channels.

We copy the first command into the prompt and run it.

Note

Do this.

This channel is now the top-priority or our default channel.

We then copy the second command into the prompt and run it.

Note

Do this.

Now the channel priority is set to strict.
With that, we have completed Step 6, and we move on.

In the next steps, we will create and activate a new Anaconda “environment”, and use that to install MESSAGEix.
Conda allows us to have multiple environments, each with different Python packages and versions installed; the conda documentation explains this concept in complete detail.
For this video, we will do everything with just 1 environment.

Let’s go through each step, one by one.
In Step 7, we create a new environment.
Note that the prompt shows us “base” in the parentheses at the left side here.

Note

Use the mouse to highlight the (base) text at the left of the prompt.

This means that we are currently in the “base” environment.
For MESSAGEix, all we need to remember is that we cannot use the “base” environment; we must create and use a new one.
Let’s do that, by typing conda create double-dash name and then “message_env”, or copying the first command of Step 7.
“message_env” will be the name of our new environment, but we can also use any other name.

Note

Type conda create --name message_env and hit [Enter].

We are prompted to say “yes” to creating this new environment, to be stored in this specific folder.
Now we see that the environment has been created, and we enter the next command from Step 7, “conda activate message_env”, giving it the name of the environment we just created.

Note

Do this.

And we see that we are now “in” this environment from the prompt.

Note

Use the mouse to highlight the (message_env) text at the left of the prompt.

The next step is Step 8.
We enter the command “conda install message-ix”.

Note

Do this.

We see that it’s now “solving” the environment.
It lists all the packages and dependencies that will be installed, which are required by MESSAGEix.
So, at the end of the list, confirm with “yes” and now we wait for all these packages to be installed.

To check that this process has picked out the latest version of MESSAGEix, we can type Ctrl+F and search for message-ix.
We can see that, first, it is one of the packages that will be installed, and second, the version matches the latest version shown in the documentation.
Currently this is version 3.3.0, but it may be a newer version as you watch this.
So in this case, we are OK.

Note

Do this.
Highlight message_ix and version number when searching for it
Prepare https://github.com/iiasa/message_ix/releases in a browser window to quickly switch there for version control

We can also check that our default channel, that we set in Step 6, is being used: both message-ix and ixmp will be installed from the conda-forge channel.

Note

Do this, highlighting with the mouse.

So far, so good!

At this point we must wait a few minutes for the packages to be downloaded and installed.
Depending on the machine, it can take more or less time; if we’ve already downloaded the packages previously, it can be faster.

So at this point, we have completed Step 8, and MESSAGEix—plus everything needed to use it—is installed.

Check the installation

If we look again at the install instructions…

Note

Change to the browser window where the install instructions appear.

…we can see that there are instructions for different ways of installing MESSAGEix, that are not covered in this video.
Since we have already installed using Anaconda, we can skip down to the section titled “Check that the installation was successful”.

To check this, we run two commands:
The first command is “message-ix show-versions”:

Note

Do this.

This is a way of accessing MESSAGEix from the command line, and it becomes available when the package is successfully installed.
“show-versions” is a specific command that—as the name implies—shows the versions of MESSAGEix, ixmp, GAMS, and other required and related packages.

By the way: when you experience an issue with MESSAGEix and you want to seek support via GitHub, it is very important to include the output of this command, because it includes essential information about your specific versions, operating system, etc.

The second command, “message-ix platform list”, shows us a list of all the “platforms” that are configured on your system.
In the IIASA ECE program, for instance, this will include our central database that we used as a shared storage for our models and scenarios.

Note

Do this.

If you’ve just installed MESSAGEix for the first time, you will see a platform that’s named “local”.
This is stored in a specific file on your system, and the path is shown here.
It also shows us that “local” is the default platform.

Another thing we can do, in order to check where Anaconda, our environment, and MESSAGEix are, is run the command “conda info”.

Note

Do this.

This shows us the directories where these have been placed.
We can copy this path and paste it into Windows Explorer to open the “anaconda3” folder.

Note

Do this.

And within this folder, we can navigate:

	first to “envs”, which means “environments”,

	then, to the folder named “message_env”, matching the name of the environment we created earlier,

	then to “Lib”, followed by “site-packages”.

Note

Do this.

In this folder, we have one folder per Python package that has been installed in this specific environment.
If we have other environments, different to “messager_env”, the corresponding “site-pacakges” folder will have different folders, with different other packages.

Note

Find and select the message_ix folder.

If we are curious to look at the source code that MESSAGEix runs, for instance the actual GAMS files with the core linear program formulation, we can look at the files in this directory, specifically, the subdirectory message_ix/model/.

Note

Show these files in Windows Explorer.

Another place to look is on GitHub directly:

Note

Switch to a browser tab with https://github.com/iiasa/message_ix.
Navigate into the “message_ix/model/” folder.

Equally, the code for the ixmp package, that handles the data storage underlying MESSAGEix, can also be found in “site-packages”.

Download and start tutorials

We’ve now installed and checked the installation of MESSAGEix.
The last thing we will cover in this video, and the first thing you will probably want to do if you are a new user, is to download and run the MESSAGEix tutorials.

Our team has developed a very rich set of example models that give you an introduction to the use of MESSAGEix, ixmp, and some of the many capabilities of the framework.

Complete information about these tutorials is available in the documentation…

Note

Go to documentation, navigate to page about “Tutorials”.

…here on this page.

So we will cover the instructions under “Getting tutorial files” and “Running tutorials using Anaconda”.

The first step is to download the tutorial files.
Since these are a kind of learning aid, they are not automatically installed with the Python and GAMS code for MESSAGEix.
This is why we need to download them.

The “message-ix” program we already used has a command “dl” that does this for us.
We only need to choose a specific folder or directory where we want the downloaded tutorials to be placed.
In this case, let’s put them into the Document folder—but they can also be placed anywhere else.
We use Windows Explorer to navigate to the Document folder, and then we copy the full path.

Note

Do this.

Next, with that same environment “message_env” active, we run the command “message-ix dl “ and then paste the path we just copied.

Note

Do this.

We see that it receives some data and unzips it into that specific folder.
It is a very quick process, so we already see that this folder has appeared, and if we double-click on it, then we see the folder where our tutorials are stored in.

Note

Do this.

The tutorials are in the form of Jupyter notebooks.
Remember - understanding and working with Jupyter notebooks is one of the prerequisite skills for learning MESSAGEix, these are listed in the documentation.
This video does not cover this.

The last thing we need to do in order to run the tutorials, is to install the “nb_conda” package for being able to run Jupyter.
So what we do is copy this command and paste it in out Anaconda Prompt and run it.

Note

Do this.

It collects again some package meta data and solves the environment.
Here, please answer also with “Yes”, so the specific packages can be downloaded.

As such, we want to start the Jupyter notebook server and use this to open the tutorials.
In order to do this, we want to switch the current working directory to this tutorial folder.
We again use Windows Explorer to copy the tutorials path, and then, in the Anaconda Prompt, we use the “cd” or “change directory” command, to move into that folder.

Note

Do this.

Next, we run the command “jupyter notebook” to start Jupyter.

Note

Do this.

A browser tab is automatically opened.
This shows the list of files and subfolders in this folder.
(If we “cd” to a different folder before running “jupyter notebook”, we would see different files.)

As a last step, let’s open one tutorial notebook, for the “Westeros baseline” tutorial.
We do this by clicking on the “Westeros” directory, and then on the file “westeros_baseline.ipynb.”

So a new browser tab opens with the tutorial.
The first thing we will need to check is that the “Kernel” which runs the notebook code is associated with the environment where we earlier installed MESSAGEix.
To do that, we click on “Kernel” in the menu, then “Change Kernel.”
An asterisk (*) shows which environment is currently active.
As we can see, it appears by “message_env”, so we know that this notebook is running in the correct environment.

We can then select the first cell and check that it runs correctly.
To do so, select the cell and hit Ctrl + Enter.

Note

Do this.

The cell runs correctly, including the line “import ixmp”.
This is a confirmation that ixmp (and MESSAGEix) are installed correctly, and can be loaded and used by the Python code in this tutorial notebook.

Conclusion

And with that we’ve reached the end of this video.
Thank you for watching.
Please read the documentation and explore the tutorials to learn more about the capabilities of the MESSAGEix framework, the ixmp platform, and how to use them in research.

 Sharing publications, projects, and tools

Sharing publications, projects, and tools

We invite you to share your publication, project, and/or tool created using the MESSAGEix framework.
To do so, please first read the steps at Contribute code via Github PRs.

Note

If you are unfamiliar with development using Git and GitHub, you can instead open an issue [https://github.com/iiasa/message_ix/issues/new] containing all of the information mentioned below.

In your branch/pull request, make the following additions:

	Add the citation of your publication/project/tool to the file doc/references.bib.

Use BibTeX format.
Give the entry a key like surname-2021, using the lead author’s name and the year of publication.

	Add a figure representing your publication/project/tool in the directory doc/_static/usage_figures/.

If possible, construct the file name using either the BibTeX entry key (above) or the DOI.

For example: the URL https://doi.org/10.1016/j.scs.2021.103257 contains the DOI 10.1016/j.scs.2021.103257.
Replace the / character with -, and append the appropriate file extension for your image, like .jpeg, .png, etc.
This might yield a file name like: doc/_static/usage_figures/10.1016-j.scs.2021.103257.jpeg

	Add your publication/project/tool to the documentation sources, specifically the existing file doc/usage.rst.
Use the existing entries as a template.

	Use the same level of heading as the other entries in the same section.

	For publications, use the full title as the heading.

	Add your figure from (2) above with the ReST code like:

.. figure:: ../_static/usage_figures/your-pub-DOI.ext
 :width: 250px
 :align: right

	Add the citation:

:cite:ct:`surname-2021`

	In case of a publication, add bullet points to describe the spatial scope/resolution, keywords, and key ways in which MESSAGEix was used in the publication.

	In case of a tool, add bullet points to describe the development goal and the key features, and link the code location (e.g. GitHub repository).
If there is a publication that describes this tool, you can also include a citation per step (1) above and abstract (below).

	Add the first max. 75 characters of the abstract/description of your publication/project/tool, followed by a link to an external location.

This paper analyses energy in Country X… `Read more →<https://doi.org/your-pub-DOI>`__

	For publications, use the DOI URL if possible.

	For tools, use the code or documentation URL.

 Frequently asked questions

Frequently asked questions

What’s included in a ‘typical’ MESSAGEix model?

A typical MESSAGEix model instance is based on a suite of technologies such as power plants, which represent a reference energy system (RES).
Each technology is characterised by its input and output commodities, costs (investment, fixed and variable components), and other technical/engineering parameters.
The model minimizes the total system cost while meeting a given demand for energy services or commodities.

Which policies and regulatory measures can be included?

The MESSAGEix framework can represent a wide range of mitigation options and policies to analyse transformation pathways.
For example, bounds or taxes on emissions can be defined to shift the system towards a low-emission technology mix.
Upper or lower bounds on deployment of new technologies can also be easily included.

Answered elsewhere

	Under which license is MESSAGEix released? → see README.md or the the documentation index.

	Can I use MESSAGEix for my own analysis? → see User guidelines and notice.

	How can I contribute to the development of the MESSAGEix framework? → see Contributing to development.

	I have a question not answered here → see the documentation index for information on the community mailing list.

 References

References

[1]
Arnulf Grubler, Charlie Wilson, Nuno Bento, Benigna Boza-Kiss, Volker Krey, David L. McCollum, Narasimha D. Rao, Keywan Riahi, Joeri Rogelj, Simon De Stercke, Jonathan Cullen, Stefan Frank, Oliver Fricko, Fei Guo, Matt Gidden, Petr Havlík, Daniel Huppmann, Gregor Kiesewetter, Peter Rafaj, Wolfgang Schoepp, and Hugo Valin. A low energy demand scenario for meeting the 1.5°c target and sustainable development goals without negative emission technologies. Nature Energy, 3:515–527, 2018. doi:10.1038/s41560-018-0172-6 [https://doi.org/10.1038/s41560-018-0172-6].

[2]
Julian David Hunt, Natalia de Assis Brasil Weber, Behnam Zakeri, Ahmadou Tidiane Diaby, Paul Byrne, Walter Leal Filho, and Paulo Smith Schneider. Deep seawater cooling and desalination: combining seawater air conditioning and desalination. Sustainable Cities and Society, 74:103257, 2021. doi:10.1016/j.scs.2021.103257 [https://doi.org/10.1016/j.scs.2021.103257].

[3]
Daniel Huppmann, Matthew Gidden, Oliver Fricko, Peter Kolp, Clara Orthofer, Michael Pimmer, Nikolay Kushin, Adriano Vinca, Alessio Mastrucci, Keywan Riahi, and Volker Krey. The MESSAGEix Integrated Assessment Model and the ix modeling platform (ixmp): An open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development. Environmental Modelling & Software, 112:143–156, 2019. doi:10.1016/j.envsoft.2018.11.012 [https://doi.org/10.1016/j.envsoft.2018.11.012].

[4]
Nils Johnson, Manfred Strubegger, Madeleine McPherson, Simon C. Parkinson, Volker Krey, and Patrick Sullivan. A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system. Energy Economics, 64:651–664, 2016. doi:10.1016/j.eneco.2016.07.010 [https://doi.org/10.1016/j.eneco.2016.07.010].

[5]
Ilkka Keppo and Manfred Strubegger. Short term decisions for long term problems – The effect of foresight on model based energy systems analysis. Energy, 35(5):2033–2042, 2010. doi:10.1016/j.energy.2010.01.019 [https://doi.org/10.1016/j.energy.2010.01.019].

[6]
Jarmo S. Kikstra, Adriano Vinca, Francesco Lovat, Benigna Boza-Kiss, Bas van Ruijven, Charlie Wilson, Joeri Rogelj, Behnam Zakeri, Oliver Fricko, and Keywan Riahi. Climate mitigation scenarios with persistent covid-19-related energy demand changes. Nature Energy, 2021. doi:10.1038/s41560-021-00904-8 [https://doi.org/10.1038/s41560-021-00904-8].

[7]
Alan Sussmann Manne and Richard G Richels. Buying greenhouse insurance: the economic costs of carbon dioxide emission limits. MIT press, 1992. ISBN 0-262-13280-X. URL: https://mitpress.mit.edu/9780262132800/buying-greenhouse-insurance/.

[8]
David L. McCollum, Wenji Zhou, Christoph Bertram, Harmen-Sytze de Boer, Valentina Bosetti, Sebastian Busch, Jacques Després, Laurent Drouet, Johannes Emmerling, Marianne Fay, Oliver Fricko, Shinichiro Fujimori, Matthew Gidden, Mathijs Harmsen, Daniel Huppmann, Gokul Iyer, Volker Krey, Elmar Kriegler, Claire Nicolas, Shonali Pachauri, Simon Parkinson, Miguel Poblete-Cazenave, Peter Rafaj, Narasimha Rao, Julie Rozenberg, Andreas Schmitz, Wolfgang Schoepp, Detlef van Vuuren, and Keywan Riahi. Energy investment needs for fulfilling the paris agreement and achieving the sustainable development goals. Nature Energy, 3:589–599, 2018. doi:10.1038/s41560-018-0179-z [https://doi.org/10.1038/s41560-018-0179-z].

[9]
Sabine Messner and Leo Schrattenholzer. Message-macro: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy - The International Journal, 2000. URL: https://pure.iiasa.ac.at/id/eprint/6258/.

[10]
Sabine Messner and Manfred Strubegger. User's guide for message iii. IIASA Working Paper, IIASA, IIASA, Laxenburg, Austria, July 1995. URL: https://pure.iiasa.ac.at/id/eprint/4527/.

[11]
Patrick Sullivan, Volker Krey, and Keywan Riahi. Impacts of considering electric sector variability and reliability in the MESSAGE model. Energy Strategy Reviews, 1(3):157–163, 2013. doi:10.1016/j.esr.2013.01.001 [https://doi.org/10.1016/j.esr.2013.01.001].

[12]
Behnam Zakeri, Julian David Hunt, Murodbek Laldjebaev, Volker Krey, Adriano Vinca, Simon Parkinson, and Keywan Riahi. Role of energy storage in energy and water security in central asia. Journal of Energy Storage, 50:104587, 2022. URL: https://www.sciencedirect.com/science/article/pii/S2352152X2200603X, doi:https://doi.org/10.1016/j.est.2022.104587 [https://doi.org/https://doi.org/10.1016/j.est.2022.104587].

[13]
Thomas Zipperle and Clara Luisa Orthofer. D2ix: a model input-data management and analysis tool for messageix. Energies, 2019. doi:10.3390/en12081483 [https://doi.org/10.3390/en12081483].

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 message_ix	

 	
 	
 message_ix.macro	

 	
 	
 message_ix.report	

 	
 	
 message_ix.report.operator	

 	
 	
 message_ix.report.pyam	

 	
 	
 message_ix.testing	

 	
 	
 message_ix.tools.add_year	

 	
 	
 message_ix.tools.lp_diag	

 	
 	
 message_ix.util	

 	
 	
 message_ix.util.tutorial	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	aconst() (in module message_ix.macro)

 	add() (message_ix.report.Reporter method)

 	add_aggregate() (message_ix.report.Reporter method)

 	add_bnd() (message_ix.tools.lp_diag.LPdiag method)

 	add_cat() (message_ix.Scenario method)

 	add_coeff() (message_ix.tools.lp_diag.LPdiag method)

 	add_file() (message_ix.report.Reporter method)

 	add_geodata() (message_ix.Scenario method)

 	add_horizon() (message_ix.Scenario method)

 	add_macro() (message_ix.Scenario method)

 	add_model_data() (in module message_ix.macro)

 	add_par() (in module message_ix.macro)

 	(message_ix.Scenario method)

 	add_product() (message_ix.report.Reporter method)

 	add_queue() (message_ix.report.Reporter method)

 	
 	add_range() (message_ix.tools.lp_diag.LPdiag method)

 	add_rhs() (message_ix.tools.lp_diag.LPdiag method)

 	add_row() (message_ix.tools.lp_diag.LPdiag method)

 	add_set() (message_ix.Scenario method)

 	add_single() (message_ix.report.Reporter method)

 	add_spatial_sets() (message_ix.Scenario method)

 	add_structure() (in module message_ix.macro)

 	add_tasks() (message_ix.report.Reporter method)

 	add_timeseries() (message_ix.Scenario method)

 	add_year() (in module message_ix.tools.add_year)

 	add_year_par() (in module message_ix.tools.add_year)

 	add_year_set() (in module message_ix.tools.add_year)

 	aggregate() (message_ix.report.Reporter method)

 	apply() (message_ix.report.Reporter method)

 	as_message_df() (in module message_ix.report.operator)

B

 	
 	bconst() (in module message_ix.macro)

C

 	
 	cache() (message_ix.report.Reporter method)

 	calibrate() (in module message_ix.macro)

 	cat() (message_ix.Scenario method)

 	cat_list() (message_ix.Scenario method)

 	change_scalar() (message_ix.Scenario method)

 	check_keys() (message_ix.report.Reporter method)

 	check_out() (message_ix.Scenario method)

 	
 	clean_model_data() (in module message_ix.macro)

 	clone() (message_ix.Scenario method)

 	collapse_message_cols() (in module message_ix.report.pyam)

 	commit() (message_ix.Scenario method)

 	configure() (message_ix.report.Reporter method)

 	convert_pyam() (message_ix.report.Reporter method)

 	coords (message_ix.models.Item attribute)

D

 	
 	DEFAULT_CPLEX_OPTIONS (in module message_ix.models)

 	default_key (message_ix.report.Reporter attribute)

 	delete_meta() (message_ix.Scenario method)

 	demand() (in module message_ix.macro)

 	describe() (message_ix.report.Reporter method)

 	
 	description (message_ix.models.Item attribute)

 	DIMS (in module message_ix.models)

 	dims (message_ix.models.Item attribute)

 	disaggregate() (message_ix.report.Reporter method)

 	discard_changes() (message_ix.Scenario method)

E

 	
 	equ() (message_ix.Scenario method)

 	equ_list() (message_ix.Scenario method)

 	eval() (message_ix.report.Reporter method)

 	
 	expand_dims() (in module message_ix.util)

 	expr (message_ix.models.Item attribute)

 	extrapolate() (in module message_ix.macro)

F

 	
 	finalize() (message_ix.report.Reporter method)

 	firstmodelyear (message_ix.Scenario property)

 	
 	from_scenario() (message_ix.report.Reporter class method)

 	from_url() (message_ix.Scenario class method)

 	full_key() (message_ix.report.Reporter method)

G

 	
 	GAMS_min_version (message_ix.models.MACRO attribute)

 	GAMSModel (class in message_ix.models)

 	gdp0() (in module message_ix.macro)

 	get() (message_ix.report.Reporter method)

 	get_comp() (message_ix.report.Reporter method)

 	get_entity_info() (message_ix.tools.lp_diag.LPdiag method)

 	
 	get_entity_range() (message_ix.tools.lp_diag.LPdiag method)

 	get_geodata() (message_ix.Scenario method)

 	get_meta() (message_ix.Scenario method)

 	get_operator() (message_ix.report.Reporter method)

 	graph (message_ix.report.Reporter attribute)

 	growth() (in module message_ix.macro)

H

 	
 	has_equ() (message_ix.Scenario method)

 	has_item() (message_ix.Scenario method)

 	has_par() (message_ix.Scenario method)

 	
 	has_set() (message_ix.Scenario method)

 	has_solution() (message_ix.Scenario method)

 	has_var() (message_ix.Scenario method)

I

 	
 	idx_names() (message_ix.Scenario method)

 	idx_sets() (message_ix.Scenario method)

 	infer_keys() (message_ix.report.Reporter method)

 	init_equ() (message_ix.Scenario method)

 	init_item() (message_ix.Scenario method)

 	init_par() (message_ix.Scenario method)

 	init_scalar() (message_ix.Scenario method)

 	init_set() (message_ix.Scenario method)

 	init_var() (message_ix.Scenario method)

 	initialize() (message_ix.models.MACRO class method)

 	(message_ix.models.MESSAGE class method)

 	(message_ix.models.MESSAGE_MACRO class method)

 	
 	INPUT_DATA (in module message_ix.macro)

 	interpolate_1d() (in module message_ix.tools.add_year)

 	interpolate_2d() (in module message_ix.tools.add_year)

 	intpol() (in module message_ix.tools.add_year)

 	is_default() (message_ix.Scenario method)

 	Item (class in message_ix.models)

 	items (message_ix.models.GAMSModel attribute)

 	(message_ix.models.MACRO attribute)

 	(message_ix.models.MESSAGE attribute)

 	(message_ix.models.MESSAGE_MACRO attribute)

 	items() (message_ix.Scenario method)

 	ix_type (message_ix.models.Item property)

K

 	
 	keys() (message_ix.report.Reporter method)

L

 	
 	last_update() (message_ix.Scenario method)

 	list_items() (message_ix.Scenario method)

 	
 	load_scenario_data() (message_ix.Scenario method)

 	locate_outliers() (message_ix.tools.lp_diag.LPdiag method)

 	LPdiag (class in message_ix.tools.lp_diag)

M

 	
 	MACRO (class in message_ix.models)

 	macro_periods() (in module message_ix.macro)

 	make_dantzig() (in module message_ix.testing)

 	make_df() (in module message_ix.util)

 	make_westeros() (in module message_ix.testing)

 	mapping_macro_sector() (in module message_ix.macro)

 	mask_df() (in module message_ix.tools.add_year)

 	MESSAGE (class in message_ix.models)

 	
 message_ix

 	module

 	
 message_ix.macro

 	module

 	
 message_ix.report

 	module

 	
 message_ix.report.operator

 	module

 	
 message_ix.report.pyam

 	module

 	
 message_ix.testing

 	module

 	
 message_ix.tools.add_year

 	module

 	
 	
 message_ix.tools.lp_diag

 	module

 	
 message_ix.util

 	module

 	
 message_ix.util.tutorial

 	module

 	MESSAGE_MACRO (class in message_ix.models)

 	model (message_ix.Scenario attribute)

 	model_periods() (in module message_ix.report.operator)

 	
 module

 	message_ix

 	message_ix.macro

 	message_ix.report

 	message_ix.report.operator

 	message_ix.report.pyam

 	message_ix.testing

 	message_ix.tools.add_year

 	message_ix.tools.lp_diag

 	message_ix.util

 	message_ix.util.tutorial

 	modules (message_ix.report.Reporter attribute)

N

 	
 	name (message_ix.models.Item attribute)

 	(message_ix.models.MACRO attribute)

 	(message_ix.models.MESSAGE_MACRO attribute)

P

 	
 	par() (message_ix.Scenario method)

 	par_list() (message_ix.Scenario method)

 	plot_cumulative() (in module message_ix.report.operator)

 	plot_hist() (message_ix.tools.lp_diag.LPdiag method)

 	preload_timeseries() (message_ix.Scenario method)

 	
 	prepare_computer() (in module message_ix.macro)

 	prepare_plots() (in module message_ix.util.tutorial)

 	price() (in module message_ix.macro)

 	print_statistics() (message_ix.tools.lp_diag.LPdiag method)

 	PYAM_CONVERT (in module message_ix.report)

R

 	
 	read_excel() (message_ix.Scenario method)

 	read_file() (message_ix.Scenario method)

 	read_mps() (message_ix.tools.lp_diag.LPdiag method)

 	remove_geodata() (message_ix.Scenario method)

 	remove_meta() (message_ix.Scenario method)

 	remove_par() (message_ix.Scenario method)

 	remove_set() (message_ix.Scenario method)

 	remove_solution() (message_ix.Scenario method)

 	
 	remove_timeseries() (message_ix.Scenario method)

 	rename() (message_ix.Scenario method)

 	Reporter (class in message_ix.report)

 	require_compat() (message_ix.report.Reporter method)

 	rho() (in module message_ix.macro)

 	row_att() (message_ix.tools.lp_diag.LPdiag method)

 	run() (message_ix.models.GAMSModel method)

 	run_id() (message_ix.Scenario method)

S

 	
 	scalar() (message_ix.Scenario method)

 	Scenario (class in message_ix)

 	scenario (message_ix.Scenario attribute)

 	scheme (message_ix.Scenario attribute)

 	set() (message_ix.Scenario method)

 	set_as_default() (message_ix.Scenario method)

 	set_filters() (message_ix.report.Reporter method)

 	
 	set_list() (message_ix.Scenario method)

 	set_meta() (message_ix.Scenario method)

 	slice_df() (in module